Rotary Actuator/Vane Type

CRB1 Series

Size: 50, 63, 80, 100

Compact auto switches can be used! (D-м9ם)

Stainless steel specification for main parts

Two different port locations (side and axial) are available.

Side ported

,

Foot mounting

Basic type CRB1 Series

With solenoid valve CVRB1 Series

Series Variations

CONTENTS

Vane Type Rotary Actuator CRB1 Series

- Vane Type Rotary Actuator CRB1 Series

How to Order ... Page 170
Specifications .. 171
Construction ... Page 176
Dimensions .. Page 177

Rotary Actuator with Solenoid Valve CVRB1 Series
How to Order .. Page 181
Specifications .. Page 182
Dimensions ... Page 182

Simple Specials
Shaft Pattern Sequencing I -XA1 to -XA24 Page 184
Shaft Pattern Sequencing II -XA31 to -XA60 Page 187

Made to Order ... Page 193

Auto Switch Mounting ... Page 195

Vane Type
 Rotary Actuator CRB1 Series Size: 50, 63, 80, 100

How to Order

Applicable Auto Switches/Refer to pages 929 to 983 for further information on auto switches.

Type	$\left\|\begin{array}{c} \text { Special } \\ \text { function } \end{array}\right\|$	Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire type	Lead wire length [m]					Pre-wired connector	Applicable load			
								0.5	(1)		3	5	None							
					DC		AC			Perpendicular	In-line	(Nil)	(M)	(L)	(Z)				(N)	
Solid state auto switch	-	Grommet	Yes	3-wire (NPN)	24 V	$\begin{array}{r} 5 \mathrm{~V}, \\ 12 \mathrm{~V} \\ \hline \end{array}$	-	M9NV	M9N		Oilproof heavy-duty cord	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	IC circuit	Relay, PLC	
				3-wire (PNP)				M9PV	M9P	\bullet		\bullet	-	\bigcirc	-	\bigcirc				
				2-wire		12 V		M9BV	M9B	-		-	-	\bigcirc	-	\bigcirc	-			
				3-wire (NPN)		$\begin{array}{r} 5 \mathrm{~V}, \\ 12 \mathrm{~V} \end{array}$		-	S79	-		-	\bullet	\bigcirc	-	\bigcirc	IC circuit			
				3-wire (PNP)				-	S7P	\bigcirc		-	\bigcirc	\bigcirc	-	\bigcirc				
				2-wire		12 V		-	T79	-		-	\bigcirc	\bigcirc	-	\bigcirc	-			
		Connector						-	T79C	-		-	\bigcirc	-	-	-				
Reed auto switch	-	Grommet	Yes	2-wire		-	100 V	-	R73	-		-	\bigcirc	\bigcirc	-					
		Connector					-	-	R73C	\bigcirc		-	\bigcirc	\bigcirc	\bigcirc		-			
		Grommet	No			$48 \mathrm{~V}, 100 \mathrm{~V}$	100 V	-	R80	\bigcirc		-	\bigcirc	\bigcirc	-		IC circuit			
		Connector				-	24 V or less	-	R80C	-		-	-	-	\bigcirc		-			

[^0]* Solid state auto switches marked with "○" are produced upon receipt of order.

Vane Type Rotary Actuator
 CRB1 Series

Specifications

- Excellent reliability and durability. The use of bearings to support thrust and radial loads improves reliability and durability.
- The body of the rotary actuator can be mounted directly.
- Two different port locations (side and axial) are available.

Symbol

Refer to pages 195 to 197 for actuators with auto switches.

- Auto switch unit and switch block unit
- Operating range and hysteresis
. How to change the auto switch detecting position
Auto switch mounting
Auto switch adjustment

Made to Order (For details, refer to pages 184 to 186, 193 and 194.)	
Symbol	Description
XA1 to XA24	Shaft type pattern
XC1	Addition of connection port
XC4	Change of rotating angle
XC5	Change of rotating angle
XC6	Change of rotating angle
XC7	Reversed shaft
XC26	Change of rotating angle
XC27	Change of rotation range and direction
XC30	Fluorine grease

Size			50	63	80	100	50	63	80	100
Vane type			Single vane (S)				Double vane (D)			
Rotating angle		Standard	$90^{\circ+4}{ }_{0}, 180{ }_{0}^{\circ+4}, 270^{\circ+4}{ }_{0}$				$90^{\circ+4}$			
		Semistandard	$100^{\circ+4}, 190^{\circ+4}{ }_{0}, 280^{\circ+4}$				$100^{\circ+4}$			
Fluid			Air (Non-lube)							
Proof pressure			1.5 MPa							
Ambient and fluid temperature			5 to $60^{\circ} \mathrm{C}$							
Max. operating pressure			1.0 MPa							
Min. operating pressure			0.15 MPa							
Rotation time adjustment range			0.1 to $1 \mathrm{~s} / 90^{\circ}$							
Allowable kinetic energy			0.082 J	0.12 J	0.398 J	0.6 J	0.112 J	0.16 J	0.54 J	0.811 J
Shaft load	Allowab	ble radial load	245 N	390 N	490 N	588 N	245 N	390 N	490 N	588 N
	Allowab	ble thrust load	196 N	340 N	490 N	539 N	196 N	340 N	490 N	539 N
Bearing			Bearing							
Port location			Side ported or Axial ported							
Port size	Side	ported	1/8		1/4		1/8		1/4	
	Axia	al ported	1/8		1/4		1/8		1/4	
Mounting			Basic, Foot							

For details on how to calculate the moment of inertia, required torque, kinetic energy, etc., refer to the "Rotary Actuators Model Selection."
Model selection software is available. For details, refer to the "Model Selection Software" section on the SMC website.

Volume

Classification	Rotating angle	Single vane (S)				Double vane (D)			
		50	63	80	100	50	63	80	100
Standard	90°	30	70	88	186	48	98	136	272
	180°	49	94	138	281	-	-	-	-
	270°	66	118	188	376	-	-	-	-
Semistandard	100°	32	73	93	197	52	104	146	294
	190°	51	97	143	292	-	-	-	-
	280°	68	121	193	387	-	-	-	-

Weight

Model	Rotating angle	Single vane (S)				Double vane (D)			
		50	63	80	100	50	63	80	100
Main body	90°	810	1365	2070	3990	830	1410	2120	4150
	180°	790	1330	2010	3880	-	-	-	-
	270°	770	1290	1950	3760	-	-	-	-
	100°	808	1360	2065	3980	822	1400	2100	4100
	190°	788	1325	2005	3870	-	-	-	-
	280°	766	1285	1940	3735	-	-	-	-
Auto switch unit + 2 auto switches		65	85	95	165	65	85	95	165
Foot bracket assembly		384	785	993	1722	384	785	993	1722

Mounting Bracket Assembly Part No.

Model		Foot bracket assembly part number	Description
Basic type	With auto switch		
CRB1LW50	CDRB1LW50	P411020-5	. 2 foot brackets
CRB1LW63	CDRB1LW63	P411030-5	. 8 mounting bolts
CRB1LW80	CDRB1LW80	P411040-5	. 8 mounting nuts
CRB1LW100	CDRB1LW100	P411050-5	. 8 washers

[^1]
CRB1 Series

Effective Output

Size: 50

Size: 63

Size: 80

Size: 100

Key Position and Rotation Range $\begin{aligned} & \text { (Top view from Long Shaftions in the figures below show the intermediate rotation position when } \mathrm{A} \text { or } \mathrm{B} \text { port is pressurized. }\end{aligned}$

Single vane type				Double vane type
	90°	180°	270°	90°
	100°	190°	280°	100°

Direct Mounting of Body

Reference Screw Size

Size	\mathbf{L}	Screw
$\mathbf{5 0}$	48	M 6
$\mathbf{6 3}$	52	M 8
$\mathbf{8 0}$	60	M 8
$\mathbf{1 0 0}$	80	M10

Vane Type Rotary Actuator CRB1 Series

With One-touch Fittings

CRB1 Mounting W50F - Rotating angle Vane type Port location
I With One-touch fittings

With One-touch fittings facilitate the piping work and greatly reduce the installation space.

Specifications

Vane type	Single vane
Size	Double vane
Operating pressure range $[\mathrm{MPa}]$	0.15 to 1.0
Speed regulation range $\left[\mathrm{s} / 90^{\circ}\right]$	0.1 to 1
Port location	Side ported or Axial ported
Piping	With One-touch fittings
Mounting	Basic, Foot
Variations	Basic type, With auto switch

Applicable Tubing and Size

Applicable tubing O.D/I.D $[\mathrm{mm}]$	$\varnothing \mathbf{6} / \varnothing \mathbf{4}$
Applicable tubing material	Nylon, Soft nylon, Polyurethane

Refer to page 180 for external dimensions.

Clean Series

The double-seal construction of the actuator shaft section of these series to channel exhaust through the relief ports directly to the outside of a clean room environment allows operation of these cylinders in a class 100 clean room.

Specifications

Vane type	Single/Double vane	
Size	$\mathbf{5 0}$	$\mathbf{6 3}$
Operating pressure range $[\mathrm{MPa}]$	0.15 to 1.0	
Speed regulation range $\left[\mathrm{s} / 90^{\circ}\right]$	0.1 to 1	
Port location	Side ported or Axial ported	
Piping	Screw-in type	
Relief port size $\times 0.8$		
Mounting	Basic	
Variations	Basic type, With auto switch	
Allowable kinetic energy	0.029 J	0.042 J

CRB1 Series

Stainless Steel Specification for Main Parts

Nil	Basic type
D	With auto switch (With switch unit)

Specifications

Vane type	Single/Double vane			
Size	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
Operating pressure range $[\mathrm{MPa}]$	0.15 to 1.0			
Speed regulation range $\left[\mathrm{s} / 90^{\circ}\right]$	0.1 to 1			
Port location	Side ported or Axial ported			
Piping	Screw-in type			
Mounting	Basic, Foot			
Variations	Basic type, With auto switch			
Allowable kinetic energy	0.029 J	0.042 J	0.142 J	0.212 J

Stainless Steel Parts

	Description
1	Vane shaft
2	Hexagon socket head cap screw
3	Special screw
4	Parallel key

* Individual part cannot be shipped.

Vane Type Rotary Actuator
 CRB1 Series

Rotary Actuator: Replaceable Shaft

A shaft can be replaced with a different shaft type except for standard shaft type (W).

Without auto switch CRB1B										
\mathbf{J}						Size	Rotating angle	Vane type	Port location	- Made to Order

J	K	S	T	X	Y	z

[mm]

Size	C	D
$\mathbf{5 0}$	19.5	39.5
$\mathbf{6 3}$	21	45
$\mathbf{8 0}$	23.5	53.5
$\mathbf{1 0 0}$	30	65

Note) Dimensions of the shaft and key groove are the same as the standard.
(Dimension parts different from the standard conform to the general tolerance.)

With auto switch	ch CDRB1B	Size - Ro	Vane type	Port locatio	- Made to Order
With auto switch ¢		- Made to Order			
				Symbol	Description
Shaft type				XA31 to XA60	Shaft type pattern
				XC1	Addition of connection port
J \quad Double shaft (Long shatt with four chamfers)				XC4	Change of rotating angle
Z ${ }^{\text {Z }}$ Double shaft with four chamfers				XC5	Change of rotating angle
				XC6	Change of rotating angle
J				XC7	Reversed shaft
	Z			XC26	Change of rotating angle
XC27 Change of rotation range and direction XC30 Fluorine grease The above may not be selected when the product comes with an auto switch. Refer to pages 187 to 194 for details. [mm]					
		Size	C	D	
		50	19.5	39.5	
		63	21	45	
		80	23.5	53.5	
		100	30	65	
		Note) Dimensions of the shaft and key groove are the same as the standard. (Dimension parts different from the standard conform to the general tolerance.)			

CRB1 Series

Construction

Basic type (Keys in the figures below show the intermediate rotation position.)

For 270° (Top view from long shaft side)
Single vane

For $\mathbf{1 8 0}^{\circ}$ (Top view from long shaft side)

Single vane

For 90° (Top view
from long shaft side) Single vane

For 90° (Top view
from long shaft side)
Double vane

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body (A)	Aluminum alloy	Painted
$\mathbf{2}$	Body (B)	Aluminum alloy	Painted
$\mathbf{3}$	Vane shaft	Carbon steel* *	
$\mathbf{4}$	Stopper	Aluminum alloy	
$\mathbf{5}$	Stopper	Resin	For 90°
6	Stopper	Resin	For 180
$\mathbf{7}$	Bearing	Bearing steel	
$\mathbf{8}$	Hexagon socket head cap screw (with washer)	Chrome molybdenum steel	
$\mathbf{9}$	Special screw	Chrome molybdenum steel	
$\mathbf{1 0}$	Parallel key	Carbon steel	
$\mathbf{1 1}$	O-ring	NBR	
$\mathbf{1 2}$	O-ring	NBR	Special O-ring
$\mathbf{1 3}$	Stopper seal	NBR	Special seal
$\mathbf{1 4}$	Holding rubber	NBR	

* Individual part cannot be shipped.
* The material is chrome molybdenum steel for double vane type.

With auto switch
(Keys in the figures below show the actuator for 180° when A port is pressurized.)

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Cover (A)	Resin	
$\mathbf{2}$	Cover (B)	Resin	
$\mathbf{3}$	Magnet lever	Resin	
$\mathbf{4}$	Holding block	Stainless steel	
$\mathbf{5}$	Switch block (A)	Resin	
$\mathbf{6}$	Switch block (B)	Resin	
$\mathbf{7}$	Magnet	-	
$\mathbf{8}$	Arm	Stainless steel	
$\mathbf{9}$	Rubber cap	NBR	
$\mathbf{1 0}$	Cross recessed round head screw	Stainless steel	
$\mathbf{1 1}$	Hexagon socket head set screw	Stainless steel	
$\mathbf{1 2}$	Cross recessed round head screw	Chrome molybdenum steel	For size 50, 63, 80
	Hexagon socket head cap screw	Chrome molybdenum steel	For size 100
$\mathbf{1 3}$	Cross recessed round head screw	Stainless steel	
$\mathbf{1 4}$	Switch holder	Stainless steel	

* Individual part cannot be shipped. Please purchase the whole unit. (Refer to page 195.)

Vane Type Rotary Actuator
 CRB1 Series

Dimensions: 50, 63, 80, 100
Single vane type/Double vane type

CRB1BW $\square-\square$ S/D

<Port location: Side ported>

Size	A1	A2	B	C	D	$\begin{gathered} \hline E_{1} \\ (\mathrm{~g} 6) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { E2 } \\ \text { (h9) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{F} \\ (\mathrm{h} 9) \end{gathered}$	G	H	J	K	L	M1	M2	M3	N1	N2	P	Q	$\begin{array}{\|c\|} \hline \mathbf{R} \\ (*) \end{array}$	S	T	U	V	W	X	Y	Z
50	67	78	70	19.5	39.5	$12_{-0.017}^{-0.006}$	11.9-0.043	$25_{-0.052}^{0}$	3	10	13	5	13.5	26	18	21	14	18	50	$\begin{array}{\|c} \hline \text { M6 } \times 1 \\ \text { depth } 9 \end{array}$	1/8	60	R6	11	34	66	46	5.5	6.5
63	82	98	80	21	45	$15_{-0.017}^{-0.006}$	14.9-0.043	$28_{-0.052}^{0}$	3	12	14	5	17	29	22	27	15	25	60	M8 x 1.25 depth 10	1/8	75	R7.5	14	39	83	52	8	9
80	95	110	90	23.5	53.5	$17_{-0.017}^{-0.006}$	16.9-0.043	$30_{-0.052}^{0}$	3	13	16	5	19	30	30	29	20	30	70	M8× 1.25 depth 12	1/4	88	R8	15	48	94	63	7.5	9
100	125	140	103	30	65	$25_{-0.020}^{-0.007}$	24.9-0.052	$45_{-0.062}^{0}$	4	19	22	5	28	35.5	32	38	24	38	80	M10 $\times 1.5$ depth 13	1/4	108	R_{11}	11.5	60	120	78	7.5	11

[^2]
CRB1 Series

Dimensions: 50, 63, 80, 100 (With auto switch)
Single vane type/Double vane type

CDRB1BW $\square-\square S / D$

<Port location: Side ported>

Key Dimensions

Key dimension			
Size	b (h9)	h (h9)	L
50	$4_{-0.030}^{0}$	$4_{-0.030}^{0}$	20
63	$5{ }_{-0.030}^{0}$	$5{ }_{-0.030}^{0}$	25
80	$5{ }_{-0.030}^{0}$	$5{ }_{-0.030}^{0}$	36
100	$7_{-0.036}^{0}$	7-0.036	40

Axial ported (Port location): CDRB1BW $\square-\square$ SE, CDRB1BW $\square-\square D E$

Size	A1	A2	B	C	D	$\begin{gathered} \mathbf{E} \\ (\mathrm{g} 6) \end{gathered}$	$\begin{gathered} \mathbf{F} \\ (\mathrm{h} 9) \end{gathered}$	G1	G2	$\begin{gathered} \mathbf{H} \\ \text { (R) } \end{gathered}$	J	K	L	M1	M2	M3	N1	N2	P	Q	$\begin{gathered} \hline \mathbf{R} \\ (*) \\ \hline \end{gathered}$	S	T	U	V	W	X	Y	Z
50	67	78	70	32	39.5	$12^{-0.0006}$	$25_{-0.052}^{0}$	3	6.5	R22.5	32.5	5	13.5	26	18	21	14	18	50	$\begin{array}{\|c\|} \hline \begin{array}{c} \mathrm{M} 6 \times 1 \\ \text { depth } 9 \end{array} \\ \hline \end{array}$	1/8	60	R6	11	34	66	46	5.5	6.5
63	82	98	80	34	45	$15_{-0.017}^{-0.006}$	$28_{-0.052}^{0}$	3	8	${ }^{\text {R30 }}$	21	5	17	29	22	27	15	25	60	M8 x 1.25 depth 10	1/8	75	R7.5	14	39	83	52	8	9
80	95	110	90	34	53.5	$17_{-0.017}^{-0.006}$	$30_{-0.052}^{0}$	3	8	${ }^{\text {R30 }}$	21	5	19	30	30	29	20	30	70	M8 x 1.25 depth 12	1/4	88	R8	15	48	94	63	7.5	9
100	125	140	103	39	65	$25_{-0.020}^{-0.07}$	$45_{-0.062}^{0}$	4	13	${ }^{\text {R }} 30$	21	5	28	35.5	32	38	24	38	80	M10 $\times 1.5$ depth 13	1/4	108	R11	11.5	60	120	78	7.5	11

* For single vane type: Above figures show actuators for 180° when B port is pressurized.
* For double vane type: Figures above show the intermediate rotation position when the A or B port is pressurized.
* In addition to Rc, G and NPT are also available for connection ports.

Vane Type
 Rotary Actuator CRB1 Series

Dimensions
Option: Foot bracket

Size	Foot bracket assembly part number	LA1	LA2	LB1	LB2	LC	LD	LE	LF	LG	LH	LJ1	LJ2	LK	LM	T
50	P411020-5	78	70	45	50	36	25.5	$ø 10$	4.5	45	7.5	34	66	60.5	84	48
63	P411030-5	100	90	56		44	30	$\varnothing 12$	5	60	9.5	39	83	75.5	110	52
80	P411040-5	111	100	63		46	32	$ø 12$	6	65	9.5	48	94	88.5	120.5	60
100	P411050-5	141	126	80		55	39.5	$ø 14$	6	80	11.5	60	120	108.5	150.5	80

Note 1) The foot bracket (with bolt, nut, and washer) is not mounted on the actuator at the time of shipment.
Note2) The foot bracket can be mounted on the rotary actuator at 90° intervals.
Note 3) Refer to the foot bracket assembly part number in the table at right when foot bracket assembly is required separately.

Model		Foot bracket assembly part number
Basic type	With auto switch	
CDRB1LW50	P411030-5	
CRB1LW63	CDRB1LW63	PD11040-5
CRB1LW80	CDRB1LW80	P411050-5
CRB1LW100	CDRB1LW100	P411050-5

CRB1 Series

With One-touch Fittings: 50

Basic type

CRB1—W50F-a
<Port location: Side ported>

CRB1 $\square W 50 F-\square \square E$
<Port location: Axial ported>

Applicable Tubing and O.D/I.D

Applicable tubing O.D/I.D $[\mathrm{mm}]$	$\varnothing \mathbf{6} / \varnothing \mathbf{4}$
Applicable tubing material	Nylon, Soft nylon, Polyurethane

* Dimensions not indicated in the above figures are the same as size 50 actuator.
* Keys in the figures above show the intermediate rotation position for single vane type.

With auto switch
CDRB1 \square W50F- $\square \square-\square$
<Port location: Side ported>

CDRB1 \square W50F- $\square \square E-\square$
<Port location: Axial ported>

$$
\because
$$

$2 \times$ One-touch fitting

D-M9 \square

Rotary Actuator with Solenoid Valve CVRB1 Series
 Size: 50, 63, 80, 100

How to Order

Rotary Actuator

Applicable Auto Switches/Refer to pages 929 to 983 for further information on auto switches.

Type		Electrical entry		Wiring (Output)	Load voltage			Auto switch model		Lead wire type	Lead wire length [m]					Pre-wired connector	Applicable load			
								0.5	$\begin{array}{\|c\|} \hline 1 \\ (\mathrm{M}) \end{array}$		3	5	None							
Solid state auto switch			$\stackrel{\oplus}{\stackrel{\infty}{\infty}}$	3-wire (NPN)	DC		-			Perpendicular	In-line	Oilproof heavyduty cord	\bigcirc	\bigcirc	\bigcirc	(Z)	-		16 circuit	Relay, PLC
		Grommet		3 -wire (PNP)	24 V	12 V		M9PV	M9P	-	-		-	\bigcirc	-	\bigcirc				
				2-wire		12 V		M9BV	M9B	-	\bigcirc		\bullet	\bigcirc	-	\bigcirc				
				3 -wire (NPN)		5 V ,		-	S79	-	-		\bigcirc	\bigcirc	-	\bigcirc				
				3-wire (PNP)		12 V		-	S7P	-	-		\bullet	\bigcirc	-	\bigcirc	circuir			
				2-wire				-	T79	-	-		\bigcirc	\bigcirc	-	\bigcirc	-			
		Connector						-	T79C	-	-		\bullet	-	\bigcirc	-				
Reed auto switch	Grommet Connector Grommet Connector			2-wire			100 V	-	R73	-	-		\bigcirc	\bigcirc	-					
						-	-	R73C	-	-	\bullet		\bigcirc	\bigcirc						
			$48 \mathrm{~V}, 100 \mathrm{~V}$			100 V	-	R80	-	-	\bigcirc		\bigcirc	-	1 Cc circuit					
			- 2			24 V or less	-	R80C	-	-	-		-	-	-					

* Lead wire length symbols:
$0.5 \mathrm{~m} \quad$ Nil (Example) R73C
$3 \mathrm{~m} \quad \mathrm{L}$ (Example) R73CL
$5 \mathrm{~m} \cdots \ldots . \quad$ Z (Example) R73CZ None N (Example) R73CN
* Solid state auto switches marked with " O " are produced upon receipt of order.

CVRB1 Series

Refer to pages 195 to 197 for actuators with auto switches. - Auto switch unit and switch block unit - Operating range and hysteresis - How to change the auto switch detecting position - Auto switch mounting - Auto switch adjustment

Solenoid Valve Specifications

Model			SYJ5000/SYJ7000 series
Manual override			Non-locking push type Locking type (Slotted), Locking type (Manual)
Pilot exhaust type			Pilot valve individual exhaust
Mounting position			Free
Impact/Vibration resistance [m/s ${ }^{\mathbf{2}}$] Note 1)			150/30
Enclosure			Dusttight
Electrical entry			Grommet (G)/(H), L plug connector (L), M plug connector (M), DIN terminal (D)
Coil rated voltage [V]	AC $50 / 60 \mathrm{~Hz}$		100, 200
		DC	24
Allowable voltage fluctuation [\%]			$\pm 10 \%$ of rated voltage
Power consumption [W] [Current mA] ${ }^{\text {Note 2) }}$	DC		0.35 (With indicator light: 0.4 DIN terminal with indicator light: 0.45)
Apparent power [VA] Note 2) [Current mA]	AC	Inrush	4.5 to $50 \mathrm{~Hz}, 4.2 / 60 \mathrm{~Hz}\left[\begin{array}{c}100 \mathrm{VAC}: 4 / 50 / \mathrm{Hz}, 42 / 60 \mathrm{~Hz} \\ 200 \mathrm{VAC}: 22.5 / 50 \mathrm{~Hz}, 21 / 6 \mathrm{~Hz}\end{array}\right]$
		Holding	$3.5 / 50 \mathrm{~Hz}, 3 / 60 \mathrm{~Hz}\left[\begin{array}{c}100 \mathrm{VAC}: 35 / 50 \mathrm{~Hz}, 3 / 60 \mathrm{~Hz} \\ 200 \mathrm{VAC}: 17.5 / 50 \mathrm{~Hz}, 15 / 60 \mathrm{~Hz}\end{array}\right]$
Surge voltage suppressor			Diode (Varistor is for DIN terminal and Non-polar type.)
Indicator light			DC: LED (Red), AC: Neon bulb
* Option Note 1) Impact resistance: No malfunction occurred in the impact test using a drop impact tester. The test was performed at both energized and de-energized states to the axis and right angle direction of the main valve and armature. Vibration resistance: No malfunction occurred in the one-sweep test between 45 and 2000 Hz . A test was performed at both energized and de-energized states to the axis and right angle direction of the main valve and armature. (Value in the initial stage.) Note 2) At the rated voltage.			
About rotary actuator specifications The vibration adjustment range differs from that of the standard series. With solenoid valve: 0.3 to $1 \mathrm{~s} / 90^{\circ}$ Other specifications and structures are similar to those of the standard CRB1 series. Refer to pages 171 and 176.			
For details on how to calculate the moment of inertia, required torque, kinetic energy, etc., refer to the "Rotary Actuators Model Selection." Model selection software is available. For details, refer to the "Model Selection Software" section on the SMC website.			

Dimensions

Size	A1	A2	B1	B2	B3	C1	C2	C3	D1	D2	E1	E2	F1	F2	G	R
50	78	67	18	36	2.8	68.7 (75.9)	87.4 (91.8)	43.7 (45.9)	12	24	11.5	30	38.7	77.4	25	1/8
63	98	82	18	36	2.8	71.7 (73.9)	87.4 (91.8)	43.7 (45.9)	15	24	11.5	30	38.7	77.4	27.5	1/8
80	110	95	22	48	4	87.8 (90)	107.6 (112)	53.8 (56)	17	29	14	38	48.8	97.6	36	1/8
100	140	125	22	48	4	83.8 (86)	107.6 (112)	53.8 (56)	23.5	29	14	38	48.8	97.6	42.5	1/8

CRB1 Series (Size: 50, 63, 80, 100) Simple Specials
 -XA1 to -XA24: Shaft Pattern Sequencing I

Shaft shape pattern is dealt with through the Simple Specials System.
Please contact your local sales representative for more details.

Shaft Pattern Sequencing Symbol

Note) The tolerance of the additionally machined parts conforms to the general tolerance.

- Axial: Top (Long shaft side)

Symbol	Description	Size			
		50	63	80	100
XA1	Shaft-end female thread	\bigcirc	\bigcirc	-	-
XA14*	Shaft through-hole + Shaft-end female thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA17*	Change of long shaft length (Change of key length)	\bigcirc	\bigcirc	-	\bigcirc
XA24*	Double key	\bigcirc	\bigcirc	-	\bigcirc

* The vane type for the shaft through-hole is compatible with single vanes only.
- Axial: Bottom (Short shaft side)

Symbol	Description	Size			
		50	63	80	100
XA2*	Shaft-end female thread	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA15*	Shaft through-hole + Shaft-end female thread	\bigcirc	-	\bigcirc	\bigcirc
XA18*	Change of short shaft length	-	-	-	\bigcirc

* The vane type for the shaft through-hole is compatible with single vanes only.
- Double Shaft

Symbol	Description	Size			
		50	63	80	100
XA13*	Shaft through-hole	\bigcirc	\bigcirc	\bigcirc	-
XA16*	Shaft through-hole + Double shaft-end female threads	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA19*	Change of double shaft length	\bigcirc	\bigcirc	\bigcirc	\bigcirc
XA20*	Reversed shaft, Change of double shaft length	\bigcirc	\bigcirc	-	\bigcirc

* The vane type for the shaft through-hole is compatible with single vanes only.
* The product with an auto switch is available only for XA1, 14, 17 and 24.

Combination

XA \square Combination

Symbol	Description	$\begin{array}{\|l\|} \hline \text { Axial direction } \\ \hline \text { Up \|Down } \\ \hline \end{array}$		Combination										
XA1	Shaft-end female thread	\bigcirc	-	XA1										
XA2	Shaft-end female thread	-	\bigcirc	-	XA2									
XA13	Shaft through-hole	\bigcirc	\bigcirc	-	-	XA13								
XA14	Shaft through-hole + Shaft-end female thread	\bigcirc		-	-	-	XA14							
XA15	Shaft through-hole + Shaft-end female thread	-	\bigcirc	-	-	-	-	XA15						
XA16	Shaft through-hole + Double shaft-end female threads	\bigcirc	\bigcirc	-	-	-	-	-	XA16					
XA17	Change of long shaft length (Change of key length)	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	XA17				
XA18	Change of short shaft length	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	XA18			
XA19	Change of double shaft length	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	-	-	-	XA19		
XA20	Reversed shaft, Change of double shaft length	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-	XA20	
XA24	Double key	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	-	XA24

A total of two XA \square combinations is available Example: XA1A24

XA \square, XC \square Combination

Combination other than -XAD, such as Made to Order (-XCD), is also available.
Refer to pages 193 to 194 for details about made-to-order specifications.

Symbol	Description	Size	$\begin{array}{\|c\|} \hline \text { XA1, XA2 } \\ \text { XA13 to } 20,24 \\ \hline \end{array}$
XC1	Addition of connection port	$\begin{aligned} & 50,63 \\ & 80,100 \end{aligned}$	-
XC4	Change of rotating angle		\bigcirc
XC5	Change of rotating angle		-
XC6	Change of rotating angle		\bigcirc
XC7	Reversed shaft		-
XC26	Change of rotating angle		\bigcirc
XC27	Change of rotation range and direction		\bigcirc
XC30	Fluorine grease		-

Axial: Top (Long shaft side)

Symbol: A1

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: W

$[\mathrm{mm}]$	
Size	Q1
$\mathbf{5 0}$	M3, M4, M5
$\mathbf{6 3}$	M4, M5, M6
$\mathbf{8 0}$	M4, M5, M6
$\mathbf{1 0 0}$	M5, M6, M8

Symbol: A14

Applicable to single vane type only
A special end is machined onto the long shaft, and a through-hole is drilled into it. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M5: L1 $=10$
- Applicable shaft type: W

Symbol: A17

Shorten the long shaft.

- Applicable shaft type: W

	$[\mathrm{mm}]$
Size	\mathbf{X}
$\mathbf{5 0}$	24.5 to 39.5
$\mathbf{6 3}$	28 to 45
$\mathbf{8 0}$	30.5 to 53.5
$\mathbf{1 0 0}$	40 to 65

Symbol: A24

Double key

Keys and keyways are machined at 180° of standard position.

- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

		$[\mathrm{mm}]$	
Size	Keyway dimension	LL	
$\mathbf{5 0}$	$4 \times 4 \times 20$		
$\mathbf{6 3}$	$5 \times 5 \times 25$	5	
$\mathbf{8 0}$	$5 \times 5 \times 36$		
$\mathbf{1 0 0}$	$7 \times 7 \times 40$		

Axial: Bottom (Short shaft side)

Symbol: A2

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 = 8
- Applicable shaft type: W

	$[\mathrm{mm}]$
Size	Q2
$\mathbf{5 0}$	$\mathrm{M} 3, \mathrm{M} 4, \mathrm{M} 5$
$\mathbf{6 3}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{8 0}$	$\mathrm{M} 4, \mathrm{M} 5, \mathrm{M} 6$
$\mathbf{1 0 0}$	$\mathrm{M} 5, \mathrm{M} 6, \mathrm{M} 8$

Symbol: A15

Applicable to single vane type only
A special end is machined onto the short shaft, and a through-hole is drilled into it.
Female threads are machined into the through-hole, whose diameter is equivalent
to the pilot hole diameter.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 = 8
- Applicable shaft type: W

Symbol: A18

- Applicable shaft type: W

	$[\mathrm{mm}]$
Size	\mathbf{Y}
$\mathbf{5 0}$	4 to 19.5
$\mathbf{6 3}$	4 to 21
$\mathbf{8 0}$	4 to 23.5
$\mathbf{1 0 0}$	5 to 30

CRB1 Series

Double Shaft

Symbol: A13

Shaft with through-hole

- Minimum machining diameter for d 1 is 0.1
- Applicable shaft type: W

Symbol: A19

Shorten both long and short shafts.

- Applicable shaft type: W

	[mm]	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	24.5 to 39.5	4 to 19.5
$\mathbf{6 3}$	28 to 45	4 to 21
$\mathbf{8 0}$	30.5 to 53.5	4 to 23.5
$\mathbf{1 0 0}$	40 to 65	5 to 30

Symbol: A16

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size
(Example) For M5: L1 = 10
- Applicable shaft type: W
- Equal dimensions are indicated by the same marker.

Shread	50	63	80	100
M5 $\times 0.8$	$\varnothing 4.2$	$ø 4.2$	$\varnothing 4.2$	-
M6x 1	-	$ø 5$	ø5	$\varnothing 5$
M8 $\times 1.25$	-	-	-	$\varnothing 6.8$

Symbol: A20
The rotation axis is reversed
(If shortening the shaft is not required, indicate "*" for dimension X, Y.) - Applicable shaft type: W

Size	X	Y
50	4 to 19.5	24.5 to 39.5
63	4 to 21	28 to 45
80	4 to 23.5	30.5 to 53.5
100	5 to 30	40 to 65

CRB1 Series (Size: 50, 63, 80, 100)
 Simple Specials
 -XA31 to -XA60: Shaft Pattern Sequencing II

Shaft shape pattern is dealt with through the Simple Specials System.
Please contact your local sales representative for more details.

Symbol
Shaft Pattern Sequencing II

Shaft Pattern Sequencing Symbol

- Axial: Top (Long shaft side)

Symbol	Description	Shaft type	Size
XA31	Shaft-end female thread	S, Y	$\begin{array}{r} 50, \\ 63, \\ 80, \\ 100 \end{array}$
XA33	Shaft-end female thread	J, K, T	
XA35	Shaft-end female thread	X, Z	
XA37	Stepped round shaft	J, K, T	
XA45	Middle-cut chamfer	J, K, T	
XA48	Change of long shaft length (With keyway)	S, Y	
XA51	Change of long shaft length (Without keyway)	J, K, T	
XA54	Change of long shaft length (With four chamfers)	X, Z	

- Axial: Bottom (Short shaft side)

Symbol	Description	Shaft type	Size
XA32	Shaft-end female thread	S, Y	$\begin{array}{r} 50, \\ 63, \\ 80, \\ 100 \end{array}$
XA34	Shaft-end female thread	K, T	
XA36	Shaft-end female thread	J, X, Z	
XA38	Stepped round shaft	K	
XA46	Middle-cut chamfer	K	
XA49	Change of short shaft length (With keyway)	Y	
XA52	Change of short shaft length (Without keyway)	K	
XA55	Change of short shaft length (With four chamfers)	J, Z	

Symbol	Description	Shaft type	Size
XA39*	Shaft through-hole	S, Y	$\begin{array}{r} 50, \\ 63, \\ 80, \\ 100 \end{array}$
XA40*	Shaft through-hole	K, T	
XA41*	Shaft through-hole	J, X, Z	
XA42*	Shaft through-hole + Double shaft-end female threads	S, Y	
XA43*	Shaft through-hole + Double shaft-end female threads	K, T	
XA44*	Shaft through-hole + Double shaft-end female threads	J, X, Z	
XA50	Change of double shaft length (Both sides with keyway)	Y	
XA53	Change of double shaft length (Without keyway)	K	
XA56	Change of double shaft length (Both sides with four chamfers)	Z	
XA57	Change of double shaft length (With four chamfers, without kewway)	J	
XA58	Reversed shatt, Change of double shatt length (With four chamerers, without keyway)	J, T	
XA59	Reversed shaft, Change of shaft length (With four chamfers)	X	
XA60	Reversed shaft, Change of shaft length (With keyway)	S	

* The vane type for the shaft through-hole is compatible with single vanes only.
* The product with an auto switch is available only for J and Z shafts of $X A 33,35,37$ 45,51 and 54 .

CRB1 Series

Combination

XA \square Combination

Symbol	Description	\|ximidefing Applicable shaft type									Combination												
			Up Dam	Jan J	K	K	T	T X	Y				* These are shaft types that can be combined.										
XA31	Shaft-end female thread		-			-	-		-		XA31												
XA32	Shaft-end female thread		-	-		-	-		-		\bullet	XA32	332										
XA33	Shaft-end female thread		-	-	\bigcirc	-	-	-			-		- XA33										
XA34	Shaft-end female thread		-	-	-	-	-	-				-	- -	XA34									
XA35	Shaft-end female thread							-		-	-	-	-	-	XA35								
XA36	Shaft-end female thread			-			-	-		\bullet	-	-	J^{*}	-	X, ${ }^{*}$								
XA37	Stepped round shaft		-	-			-	-			-	-	- -	K, T*	-								
XA38	Stepped round shaft			-	-						-	-	- K*	*	-	-	\bullet						
XA39	Shaft through-hole		-	-		-	-		-		-	-	- -	- -	-	-	-						
XA40	Shaft through-hole		-	-	-	-	-	-			-	-	- -	-	-	-	-						
XA41	Shaft through-hole		-	-				-		\bullet	-	-	- -	-	-	-	-						
XA42	Shaft through-hole + Double shaft-end female threads		\bigcirc	-		-			-		-	- -	- -	-	-	-	-						
XA43	Shaft through-hole + Double shaft-end female threads		\bullet	-	-		-	-			-	-	- -	-	-	-	-						
XA44	Shaft through-hole + Double shaft-end female threads			0				-		\bullet	-	-	- -	-	-	-		XA38					
XA45	Middle-cut chamfer		-	-			-	-	-		-	-	-	K, T*	-	J^{*}	-	K^{*}		XA40 X	XA41	41 XA45	
XA46	Middle-cut chamfer			-							-	-	- K*	*	-	-	K*	-	-	-	-	K^{*}	* XA46
XA48	Change of long shaft length (With keyway)		-	-		-	-		\bullet		-	\bullet	-	- -	-	-	-	-	\bullet	-	-	-	
XA49	Change of short shaft length (With keyway)			-					-		Y^{*}	-	- -	-	-	-	-	-	Y*	-		-	
XA50	Change of double shaft length (Both sides with keyway)		- 0	-					-		-	- -	- -	- -	-	-	-	-	Y^{*}	-		-	
XA51	Change of long shaft length (Without keyway)		-				-	-			-	-	- -	K, T^{*}	-	${ }^{\text {J* }}$	-	K*	-	K, T*	J^{*}	-	- K^{*}
XA52	Change of short shaft length (Without keyway)			-					-		-	-	K^{*}	-	-	-	-	-	-	K*	-	K*	
XA53	Change of double shaft length (Without keyway)		-	-	-		-		-		-	-	- -	- -	-	-	-	-	-	K*	-	-	
XA54	Change of long shaft length (With four chamfers)		-	-			-	\bullet	-	\bullet	-	- -	-	-		X, ${ }^{*}$	-	-	-		X, z^{*}	*	
XA55	Change of short shaft length (With four chamfers)		-	0						-	-	-	- ${ }^{*}$	-	Z*	-	J*	-	-	-	J, Z^{*}	J^{*}	${ }^{*}$
XA56	Change of double shaft length (Both sides with four chamfers)		\bullet	-						\bullet	-	- -	- -	- -	-	-	-	-	-	-	Z^{*}	-	
XA57	Change of double shaft length (With four chamfers, without keyway)		-	\cdots							-	- -	- -	-	-	-	-	-	-	-	J^{*}	-	
XA58	Reversed shatt, Change of double shatt length (With four chamérs, without keyway)		-	0			-				-	- -	- -	-	-	-	-	-	-	T*	J^{*}	-	- -
XA59	Reversed shaft, Change of shaft length (With four chamfers)			-			-	-			-	-	- -	-	-	-	-	-	-	-	X*	-	- -
XA60	Reversed shaft, Change of shaft length (With keyway)		-	-			-	-	-		-	- -	- -	-	-	-	-	-	S*	-	-	-	

Combinations of XA39 to XA44 with others are not available.
The vane type for the shaft through-hole is compatible with single vanes only.
A total of two XA \square combinations is available.
Example: XA31A32
Note) The tolerance of the additionally machined parts conforms to the general tolerance.

$\mathrm{XA} \square, \mathrm{XC} \square$ Combination

Combination other than XAロ, such as Made to Order (XCD), is also available. Refer to pages 193 and 194 for details about made-to-order specifications.

\left.| Symbol | Description | Applicable shaft type | XA31 to XA60 |
| :---: | :--- | :---: | :---: |
| | | J, K, S, T, X, Y, Z | |$\right]$

* The vane type for the shaft through-hole is compatible with single vanes only.

A total of four XA \square and $\mathrm{XC} \square$ combinations is available.
Example: XA31A32C1C30
XA32C1C4C30

* The product with an auto switch is available only for J and Z shafts of $X A 33,35,37$, 45,51 and 54.

Axial: Top (Long shaft side)

Symbol: A31

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: S, Y

	[mm]	
	Q1	
	S	Y
50		
63		
80		
100		

Symbol: A33

Machine female threads into the long shaft.

- The maximum dimension L1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: J, K, T

Symbol: A35
Machine female threads into the long shaft.

- The maximum dimension L 1 is, as a rule, twice the thread size.
(Example) For M3: L1 $=6$
- Applicable shaft type: X, Z

	[mm]	
	Q1	
	X	Z
50		
63		
80		
100		

Symbol: A37 $\begin{aligned} & \text { The long shaft can be further shortened by machining it into } \\ & \text { a stepped round shaft. }\end{aligned}$
(If shortening the shaft is not required, indicate " $*$ " for dimension X.)
(If not specifyying dimension CA, indicate " $*$ " instead.)

- Equal dimensions are indicated by the same marker.
- Applicable shaft type: J, K, T

Axial: Bottom (Short shaft side)

Symbol: A32 Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M4: L2 = 8
- Applicable shaft type: S, Y

Symbol: A34

Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6$
- Applicable shaft type: K, T

Symbol: A36
Machine female threads into the short shaft.

- The maximum dimension L2 is, as a rule, twice the thread size.
(Example) For M3: L2 $=6$
- Applicable shaft type: J, X, Z

Symbol: A38 $\begin{aligned} & \text { The short shaft can be further shortened by machining it into } \\ & \text { a stepped round shaft. }\end{aligned}$
(If shortening the shaft is not required, indicate "*" for dimension Y.)
(If not specifying dimension CB, indicate "*" instead.)

- Equal dimensions are indicated by the same marker
- Applicable shaft type: K

[mm]			
Size	Y	L2 max	D2
50	4 to 39.5	Y-3	3 to 11.9
63	4 to 45	Y-3	3 to 14.9
80	4 to 53.5	Y-3	3 to 16.9
100	5 to 65	Y-4	3 to 24.9

CRB1 Series

Axial: Top (Long shaft side)

Symbol: A45 The long shaft can be further shortened by machining a middle-cut chamfer into it.
(The position of the chamfer is same as the standard one.)
(If shortening the shaft is not required, indicate "*" for dimension X.)

- Minimum machining dimension is 0.1 .
- Applicable shaft type: J, K, T

Symbol: A48

Shorten the long shaft.

- Applicable shaft type: S, Y

	[mm]
Size	\mathbf{X}
$\mathbf{5 0}$	24.5 to 39.5
$\mathbf{6 3}$	28 to 45
$\mathbf{8 0}$	30.5 to 53.5
$\mathbf{1 0 0}$	40 to 65

Symbol: A51

Shorten the long shaft.

- Applicable shaft type: J, K, T

	[mm]
Size	\mathbf{X}
$\mathbf{5 0}$	4 to 39.5
$\mathbf{6 3}$	4 to 45
$\mathbf{8 0}$	4 to 53.5
$\mathbf{1 0 0}$	5 to 65

Symbol: A54 Shorten the long shaft.

- Applicable shaft type: X, Z

\triangle Caution

For the shaft patterns A45 and A46, a middle-cut chamfer may interfere with the center hole if the W1/W2 dimensions and (L1 - L3), (L2 - L4) dimensions are less than what are shown in the table below.

Size	W1 W2	L1-L3 L2-L4]
$\mathbf{5 0}$	4.5 to 6	2 to 5.5
$\mathbf{6 3}$	6 to 7.5	2 to 3
$\mathbf{8 0}$	6.5 to 8.5	2 to 6.5
$\mathbf{1 0 0}$	10.5 to 12.5	2 to 6.5
$\mathbf{1 9 0}$		

[mm]

190

Double Shaft

Symbol: A39

Applicable to single vane type only
Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 .
- Applicable shaft type: S, Y

Symbol: A41

Applicable to single vane type only
Shaft with through-hole

- Minimum machining diameter for d 1 is 0.1 .
- Applicable shaft type: J, X, Z

	[mm]		
	d1		
	J	X	Z
50		$\varnothing 4$ to	
63		$\varnothing 4$ to	
80		$\varnothing 4$ to	
100		$\varnothing 5$ to	

Symbol: A43

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through holes, whose
diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft type: K, T•Equal dimensions are indicated by the same marker.

Symbol: A50

Shorten both long and short shafts.

- Applicable shaft type: Y

		[mm]
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	24.5 to 39.5	24.5 to 39.5
$\mathbf{6 3}$	28 to 45	28 to 45
$\mathbf{8 0}$	30.5 to 53.5	30.5 to 53.5
$\mathbf{1 0 0}$	40 to 65	40 to 65

Symbol: A40
Applicable to single vane type only
Shaft with through-hole

- Minimum machining diameter for d1 is 0.1 .
- Applicable shaft type: K, T

	[mm]	
	d1	
	K	T
50		5.5
63		6
80		7.5
100		

Symbol: A42

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft type: $\mathrm{S}, \mathrm{Y} \cdot$ Equal dimensions are indicated by the same marker.

Symbol: A44

Applicable to single vane type only
A special end is machined onto both the long and short shafts, and a through-hole is drilled into both shafts. Female threads are machined into the through-holes, whose diameter is equivalent to the diameter of the pilot holes.

- The maximum dimension L1 is, as a rule, twice the thread size.
- Applicable shaft type: J, X, Z •Equal dimensions are indicated by the same marker.

J axis

\mathbf{Z} axis

Symbol: A53

Shorten both long and short shafts.

- Applicable shaft type: K

	[mm]	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	4 to 39.5	4 to 39.5
$\mathbf{6 3}$	4 to 45	4 to 45
$\mathbf{8 0}$	4 to 53.5	4 to 53.5
$\mathbf{1 0 0}$	5 to 65	5 to 65

CRB1 Series

Double Shaft

Symbol: A56

Shorten both long and short shafts.

- Applicable shaft type: Z

$[\mathrm{mm}]$		
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	4 to 19.5	4 to 19.5
$\mathbf{6 3}$	4 to 21	4 to 21
$\mathbf{8 0}$	4 to 23.5	4 to 23.5
$\mathbf{1 0 0}$	5 to 30	5 to 30

Symbol: A57

Shorten both long and short shafts.

- Applicable shaft type: J

	$[\mathrm{mm}]$	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	4 to 39.5	4 to $\mathbf{1 9 . 5}$
$\mathbf{6 3}$	4 to $\mathbf{4 5}$	4 to $\mathbf{2 1}$
$\mathbf{8 0}$	4 to 53.5	4 to 23.5
$\mathbf{1 0 0}$	5 to 65	5 to 30

Symbol: A58
The rotation axis is reversed.
The long shaft and short shaft are shortened.
(If shortening the shaft is not required, indicate "*" for dimension X, Y.)

- Applicable shaft type: J, T

	$[\mathrm{mm}]$	
Size	\mathbf{X}	\mathbf{Y}
$\mathbf{5 0}$	4 to 19.5	4 to 39.5
$\mathbf{6 3}$	4 to 21	4 to 45
$\mathbf{8 0}$	4 to 23.5	4 to 53.5
$\mathbf{1 0 0}$	5 to 30	5 to 65

CRB1 Series (Size: 50, 63, 80, 100)
Made to Order
XC1, 4, 5, 6, 7, 26, 27, 30

How to Order

Shaft type

W	Standard
J	Refer to page 175.
K	
S	
T	
X	
Y	
Z	

Connecting port location

Symbol: C1 $\quad \begin{aligned} & \text { Add connection ports on Body (A). } \\ & \text { (An additionally machined port will }\end{aligned}$
(An additionally machined port will have an aluminum surface since it will be left unfinished.)

Size	\mathbf{Q}	\mathbf{M}	\mathbf{N}
$\mathbf{5 0}$	$\mathrm{Rc} 1 / 8$	21	18
$\mathbf{6 3}$	$\mathrm{Rc} 1 / 8$	27	25
$\mathbf{8 0}$	$\mathrm{Rc} 1 / 4$	29	30
$\mathbf{1 0 0}$	$\mathrm{Rc} 1 / 4$	38	38

Made-to-Order Symbol

Symbol	Description	Applicable shaft type W, J, K, S, T, X, Y, Z	Size
XC1	Addition of connection port	\bigcirc	$\begin{array}{r} 50, \\ 63, \\ 80, \\ 100 \end{array}$
XC4	Change of rotating angle	\bigcirc	
XC5	Change of rotating angle	-	
XC6	Change of rotating angle	-	
XC7*	Reversed shaft	\bigcirc	
XC26	Change of rotating angle	\bigcirc	
XC27	Change of rotation range and direction	-	
XC30	Fluorine grease	\bigcirc	

* This specification is not available for rotary actuators with auto switch unit.

Combination

Symbol: C4
Shange of rotating angle. (Applicable to single vane type only)
Start of rotation is horizontal line (90° down from the top to
the right side).

Symbol: C5 Change of rotating angle. (Applicable to single vane type only) Start of rotation is 45° up from the bottom of the vertical line to the left side.

Start of rotation is the position of the key when B port is pressurized.
(Top view from long shaft side)

Symbol: C7

The shafts are reversed.

		$[\mathrm{mm}]$
Size	\mathbf{Y}	\mathbf{X}
$\mathbf{5 0}$	39.5	19.5
$\mathbf{6 3}$	45	21
$\mathbf{8 0}$	53.5	23.5
$\mathbf{1 0 0}$	56	30

Symbol: C27
Change of rotating angle. (Applicable to double vane type only Rotating angle $90^{\circ} \mathrm{Start}$ of rotation is 45° up from the bottom of the vertical line of the right side.

Start of rotation is the position of the key when A port is pressurized. (Top view from long shaft side)

Start of rotation is the position of the key when B port is pressurized. (Top view from long shaft side)

Symbol: C26 Change of rotating angle. (Applicable to single vane type only) Start of rotation is 45° up from the bottom of the vertical line to the right side.

Start of rotation is the position of the key when A port is pressurized. (Top view from long shaft side)

Symbol: C30 Change the standard grease to fluorine grease (Not for low-speed specification.)

CRB1 Series

Auto Switch Mounting

Auto Switch Unit and Switch Block Unit

Unit Part Number

Size	For D-M9 \square		For D-S/T79 \square, D-R73/80 \square		
	Auto switch unit part number*1	Switch block unit part number	Auto switch unit part number*1	Switch block unit part number*2	
		Common to right-hand and left-hand		For right-hand	For left-hand
50	P411020-1M	P811010-8M	P411020-1	P411020-8	P411020-9
63	P411030-1M		P411030-1	P411040-8	P411040-9
80	P411040-1M		P411040-1		
100	P411050-1M		P411050-1		

*1 An auto switch will not be included, please order it separately.
*2 Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged.

Operating Range and Hysteresis

* Operating range: θ m

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the auto switch turns OFF as the magnet travels the same direction.

* Hysteresis range: θ d

The range between the position where the auto switch turns ON as the magnet inside the auto switch unit moves and the position where the auto switch turns OFF as the magnet travels the opposite direction.

D-M9 \square

Size	$\theta \mathbf{~ m}$: Operating range	θ d: Hysteresis range
$\mathbf{5 0}$	86°	10°
$\mathbf{6 3}, \mathbf{8 0}, \mathbf{1 0 0}$	70°	10°

D-S/T79 $\square, D-R 73 / 80 \square$

Size	$\theta \mathbf{~ m}$: Operating range	θ d: Hysteresis range
$\mathbf{5 0}$	52°	8°
$\mathbf{6 3 , 8 0}, \mathbf{1 0 0}$	38°	7°

Note) Since the figures in the above table are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

How to Change the Auto Switch Detecting Position

* When setting the detecting position, loosen the cross recessed round head screw a bit and move the auto switch to the preferred position and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix position. Proper tightening torque: 0.4 to 0.6 [$\mathrm{N} \cdot \mathrm{m}$] When tightening the cross recessed round head screw, take care that the auto switch does not tilt.

D-M9 \square
Size: 50 to 100

D-S/T79 \square
D-R73/R80 \square
Size: $\mathbf{5 0}$ to 100

Auto Switch Mounting

External view and descriptions of auto switch unit

The following shows the external view and typical descriptions of the auto switch unit.

Mounting Procedure

<Applicable auto switch>

Solid state auto switch

D-M9 \square

1. Auto switch mounting Insert the auto switch into the groove of the switch holder.

2. Auto switch securing

Align the auto switch with the lower surface of the groove on the side of the switch holder, and secure the slotted set screw. (Refer to the enlarged view.)

* Proper tightening torque: 0.05 to 0.1 [$\mathrm{N} \cdot \mathrm{m}$]

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw, use the auto switch.

* When tightening the screw, take care that the auto switch does not tilt.

Mounting Procedure

<Applicable auto switch>

Solid state auto switch

D-S79, S7P
D-T79, T79C
Reed auto switch
D-R73/R73C (With indicator light)
D-R80/R80C (Without indicator light)

1. Auto switch mounting

Loosen the cross recessed round head screw (2), and insert the arm of the auto switch.

2. Auto switch securing

Set the auto switch so that it is in contact with the switch block, and tighten the cross recessed round head screw (2).

* Proper tightening torque: 0.4 to $0.6[\mathrm{~N} \cdot \mathrm{~m}]$

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw (1), use the auto switch.

* Proper tightening torque: 0.4 to $0.6[\mathrm{~N} \cdot \mathrm{~m}]$

Auto Switch Adjustment

Rotation range of the output shaft key (keyway) and auto switch mounting position <Applicable models / Size: 50, 63, 80, 100>

<Single vane>

Rotating angle: $\mathbf{9 0}^{\circ}$

Rotating angle: $\mathbf{1 8 0}^{\circ}$

Solid-lined curves indicate the rotation range of the output key (keyway). When the key is pointing to end of rotation (1) the switch for end of rotation (1) will operate, and when the key is pointing to end of rotation (2), the switch for end of rotation (2) will operate.

* Broken-lined curves indicate the rotation range of the built-in magnet. Rotation range of the switch can be decreased by either moving the switch for end of rotation (2) clockwise or moving the switch for end of rotation (2) counterclockwise. Auto switch in the figures above is at the most sensitive position.
* Each auto switch unit comes with one right-hand and one left-hand switch.
* The magnet position can be checked with a convenient indication by removing a rubber cap when adjusting the auto switch position.
* For standard products, a magnet is mounted on the opposite side of the output shaft key.
* Since four chamfers are machined into the axis of rotation, a magnet position can be readjusted at 90° intervals.

Rotating angle: $\mathbf{2 7 0}^{\circ}$

<Double vane>

Rotating angle: $\mathbf{9 0}^{\circ}$

[^0]: * Lead wire length symbols:
 $0.5 \mathrm{~m} \ldots \ldots$.
 $3 \mathrm{~m} \ldots \ldots \ldots$
 $5 \mathrm{~m} \ldots \ldots .$.

 None $\ldots \ldots$.

 Nil (Example) R73C

 | $5 \mathrm{~m}$. | Z | |
 | :--- | :--- | :--- |
 | None | N | Example)
 Example)
 R73CZ
 Example)
 R73CN |

[^1]: * Refer to page 179 for detailed dimensions.

[^2]: * For single vane type: Above figures show actuators for 180° when B port is pressurized.
 * For double vane type: Figures above show the intermediate rotation position when the A or B port is pressurized.
 * In addition to Rc, G and NPT are also available for connection ports.

