LEY Series

Size: 16, 25, 32, 40, 63, 100

Battery-less Absolute (Step Motor 24 VDC)

Rod Type LEY Series

Size: 16, 25, 32, 40 p. 421, 427

Long stroke:

 Max. 500 mm (LEY32, 40)
Mounting variations

Direct mounting: 3 directions, Bracket mounting: 3 types Either positioning or pushing control can be selected. It is possible to hold the actuator with the rod pushing a workpiece, etc.

In-line motor type

Guide Rod Type LEYG Series

Size: 16, 25, 32, 40 ค. 507, 513

Lateral end load: 5 times more*1

*1 Compared with the rod type, size 25 , and 100 mm stroke
Compatible with sliding bearings and ball bushing bearings Compatible with moment loads and stoppers (sliding bearings)

- Either positioning or pushing control can be selected.

It is possible to hold the actuator with the rod pushing a workpiece, etc.

AC Servo Motor

Rod Type LEY Series Size: 25, 32, 63, 100

Dust-tight/Water-jet-proof (IP65 Equivalent): -X5

High-output motor (100/200/400/750 W) Improved high-speed transfer ability High acceleration/deceleration compatible ($5000 \mathrm{~mm} / \mathrm{s}^{2}$) Pulse input/Positioning/ CC-Link/SSCNETIII/H types With internal absolute encoder (For the LECSB-T/C-T/S-T/N-T and LECY)

433, 441

* Size: 25, 32 * The X5 is not UL compliant.
Rod type

Size 100 has been added.

Guide Rod Type LEYG Series Size: 25, 32

Incremental (Step Motor 24 VDC)
 Incremental (Servo Motor 24 VDC)
 C (UK c~1
 * For details, refer to page 1343 and onward.

Controllers/Drivers >p. 994

Step data input type
JXC51/61, LECA6 Series (64 positioning points)
>EtherCAT/EtherNet/IPT/ PROFINET/DeviceNet ${ }^{\circledR} /$ IO-Link/
CC-Link direct input type
JXCE $\square / 91 / P 1 / D 1 / L \square / M 1$ Series
Programless type
LECP1 Series (14 positioning points)
Pulse input type
LECPA Series

AC Servo Motor Drivers

-p. 1100

For absolute encoders

- Pulse input type/ Positioning type LECSB-T Series
- CC-Link direct input type LECSC-T Series
- SSCNETIII/H type LECSS-T Series
- MECHATROLINK type $L E C Y \square$ series
 to page 1343 and onward.
 LISTED Only the LECSA and LECS \square-T are compliant.

For incremental encoders

- Pulse input type Positioning type LECSA Series

Rod Type LEY Series/Guide Rod Type LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Rod Type $L E Y \square E$ Series/Size: 16, 25, 32, $40 \quad$ p. 421

Restart from the last stop position is possible after recovery of the power supply.
Easy operation restart after recovery of the power supply
The position information is held by the encoder even when the power supply is turned off.
A return to origin operation is not necessary when the power supply is recovered.

Does not require the use of batteries. Reduced maintenance

Batteries are not used to store the position information. Therefore, there is no need to store spare batteries or replace dead batteries.

Incremental (Step Motor 24 VDC) Incremental (Servo Motor 24 VDC)

Rod Type LEY Series/Size: 16, 25, 32, 40 p. 427
Control of intermediate positioning and pushing is possible. High precision with ball screws (Positioning repeatability: $\pm 0.02 \mathrm{~mm}$)

Selectable motor mounting position

Select from 2 types of actuator cables.

- Standard cable
- Robotic cable (Flexible cable)

Manual override screw

For manual piston rod operation Adjustment operation is possible when the power is OFF.

Prevents foreign matter from entering the device
Single

knuckle joint \quad\begin{tabular}{c}
Double

knuckle joint

\quad

Simple

joint
\end{tabular}

Left side parallel type

p. 499, 500

Rod end brackets
scrapers as standard

Non-magnetizing lock mechanism (Option)
from dropping (Holding)

Applicable to the D-M9 \square, D-M9 $\square E$, and D-M9 \square W (2-color indicator)

* The auto switches should be ordered separately. Refer to pages 503 to 505 for details.

AC Servo Motor

Rod Type LEY Series/Size: 25, 32, 63, 100 p. 433, 441

- High-output motor (100/200/400/750 W)
- Improved high-speed transfer ability
- High acceleration/deceleration compatible ($5000 \mathrm{~mm} / \mathrm{s}^{2}$)
- Pulse input/CC-Link direct input/SSCNET III types/ Network card type
- With internal absolute encoder
* An incremental encoder can also be selected.
- Positioning repeatability: $\pm 0.01 \mathrm{~mm}$

Large bore size: 63, 100

- High-output motor: 400 W (Size 63)/750 W (Size 100)
- Max. work load [kg]

Size	63		100
	Parallel	In-line	In-line
Horizontal	200	80	1200
Vertical	115	72	200

${ }^{\bullet}$ Max. force [N]

Motor Size mounting position	63	100
Parallel	3343	12000
In-line	1910	12000

- Max. speed*1

Size	Speed $[\mathrm{mm} / \mathrm{s}]$
63	$1000^{* 1}$
100	$500 * 1$

*1 500 mm stroke or less

- The flange mounting pitch is based on ISO 15552. (Size 100)
- The ISO cylinder (C96 ø80) and flange mounting bracket are now standardized. (Size 100)

Ball joint

Floating joint

Application Examples	
Servo-driven press machine	Replenishment unit (spring extended piston control)

Rod Type LEY Series/Guide Rod Type LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Guide Rod Type LEYG $\square E$ Series/Size: 16, 25, 32, 40 p. 507

Restart from the last stop position is possible after recovery of the power supply.

Easy operation restart after recovery of the power supply

The position information is held by the encoder even when the power supply is turned off. A return to origin operation is not necessary when the power supply is recovered.

Does not require the use of batteries. Reduced maintenance

Batteries are not used to store the position information. Therefore, there is no need to store spare batteries or replace dead batteries.

Incremental (Step Motor 24 VDC) Incremental (Servo Motor 24 VDC)

Guide Rod Type LEYG Series/Size: 16, 25, 32, 40 p. 513

Compact, integrated guide rods
Lateral load resistance and high non-rotating accuracy
Compatible with sliding bearings and ball bushing bearings

- Sliding bearings
For lateral load applications such as when using a stopper where impact is applied -Ball bushing bearings Smooth operation suitable for pushers and lifters

Non-rotating accuracy improved by using two guide rods

Bore size [mm]	16	25	32	40
Sliding bearings	$\pm 0.06^{\circ}$			$\pm 0.05^{\circ}$
Ball bushing bearings	$\pm 0.05^{\circ}$	$\pm 0.04^{\circ}$		

When the cylinder is retracted (initial value), the non-rotating accuracy without a load and without deflection of the guide rods will be below the values shown in the table above.

Lateral end load:

 5 times or more**1 Compared with the rod type, size 25 , and 100 mm stroke

AC Servo Motor

Guide Rod Type

LEYG Series/Size: 25, 32 p. 521, 527
When using auto switches for the guide rod type LEYG series, refer to page 576.

Top side parallel motor type

$$
2
$$

Dust-tight/Water-jet-proof (IP65 Equivalen//IP67 Equivalent) LEY-X7 Series

* Testing of IP65 equivalent has also been carried out.

Scraper Lube-retainer

Seal connector

Prevents dust and water droplets from entering between the cable and motor cover

Aluminum cover

Protects the motor

Grease supply holes

Vent hole

Reduces internal pressure fluctuations in order to prevent dust and water droplets from entering the device Be sure to attach tubing.

Mounting groove for auto switches

Water-resistant type
For checking the limit and the intermediate signal

* Order the water-resistant 2-color indicator solid state auto switch separately.

Max. stroke: 500 mm*1

*1 For sizes 32 and 40

Variations

Series	Enclosure	Size			Motor mounting position
		Battery-less Absolute (Step Motor 24 VDC)	Incremental (Step Motor 24 VDC$)$ Incremental (Sevo Motor 24 VDC$)$	AC Servo Motor	
LEY-X8 $\text { p. } 883$	IP65 equivalent/ IP67 equivalent	$\begin{aligned} & 25 \\ & 32 \\ & 40 \end{aligned}$	-	-	In-line
$\begin{aligned} & \text { LEY-X7 } \\ & \text { p. } 897 \end{aligned}$	IP65 equivalent/ IP67 equivalent	-	$\begin{aligned} & 25 \\ & 32 \\ & 40 \end{aligned}$	-	In-line
LEY-X5 p. 913 LEY63- \square p. 473, 489	IP65 equivalent	-	$\begin{aligned} & 25 \\ & 32 \end{aligned}$	$\begin{aligned} & 25 \\ & 32 \\ & 63 \end{aligned}$	Top side parallel, Right side parallel*1, Left side parallel*1, In-line

Rod Type LEY Series

Guide Rod Type LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

OGuide Rod Type LEYG Series
Model Selection p. 507
How to Order p. 533
Specifications p. 535
Construction p. 537
Dimensions p. 539
Support Block p. 543Incremental (Step Motor 24 VDC) Incremental (Servo Motor 24 VDC)
© Guide Rod Type LEYG Series
Model Selection ... p. 513
How to Order p. 545
Specifications p. 549
Construction p. 553
Support Block p. 557

© 4-Axis Step Motor (Servo/24 VDC) Controller

Parallel I/O Type/JXC73/83 Series
p. 1081

EtherNet/IPTM Type/JXC93 Series
p. 1081

Actuator Cable

p. 1091

Communication Cable for Controller Setting/LEC-W2Ap. 1094

Teaching Box/LEC-T1 p. 1095

© AC Servo Motor Drivers

LECSA Series .. p. 1109
LECSB-T/LECSC-T/LECSS-T Series... p. 1109
LECYM/LECYU Series
p. 1128

Rod Type

LEY Series

Environment

Battery-less Absolute (Step Motor 24 VDC)

DustrightWaier.jet-proof (IP65 Equraeni|P67 Equiven)
LEY-X8 (Made to Order)
p. 887

AC Servo Motor

DustrightWaterjet:proof (P65 Equraen))

LEY25/32-X5 (Made to Order)
p. 925, 931

Top/Right/Left side paralle motor type
\%

LEY63 $\square \square \square-\square$ (Option)
p. 473, 489

Secondary Battery Compatible
25A-LEY p. 987, 989

Top/Right/Left side parallel motor type

Rod Type

Selection Procedure

Positioning Control Selection Procedure

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating conditions

- Workpiece mass: $4[\mathrm{~kg}] \quad$ •Speed: $100[\mathrm{~mm} / \mathrm{s}]$	W
- Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	
- Stroke: $200[\mathrm{~mm}]$	
- Workpiece mounting condition:Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY16EB can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph> (LEY16/Battery-less absolute) on page 449 and the precautions.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=2.233$ [s]
Based on the above calculation result, the LEY16EB-200 should be selected.

Selection Procedure

Pushing Control Selection Procedure

* The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

•Mounting condition: Horizontal (pushing)	\bullet Duty ratio: $18[\%]$
•Attachment weight: $0.2[\mathrm{~kg}]$	\bullet Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Pushing force: $68[\mathrm{~N}]$	\bullet Stroke: $200[\mathrm{~mm}]$

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio while referencing the conversion table of pushing force-duty ratio.
Selection example)
Based on the table below,
-Duty ratio: 18 [\%]
The pushing force set value will be 60 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Battery-less absolute)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
40 or less	100	No restriction
50	30	45 or less
60	18	15 or less
65	15	10 or less

* [Pushing force set value] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force.

<Force conversion graph>
Select a model based on the pushing force set value and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Pushing force set value: 60 [\%]
-Pushing force: 68 [N]
The LEY16EB can be temporarily selected as a possible candidate.

(LEY16/Battery-less absolute)
*1 Set values for the controller

Step 3

Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY16 \square, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
- Product stroke: 200 [mm]

The lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16EB-200 should be selected.

<Graph of allowable lateral load on the rod end>

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)

For Battery-less Absolute (Step Motor 24 VDC)

Horizontal

LEY16 \square E $\quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY25 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 $\square E$

Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY16 \square E

LEY25 $\square E$

LEY32 $\square E$

LEY40 $\square E$

Model Selection LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Force Conversion Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)
LEY16 \square E

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]

$\mathbf{3 0}{ }^{\circ} \mathbf{C}$ or less	65 or less	100	No restriction
\mathbf{C}}{}	40 or less	100	No restriction
	50	30	45 or less
	60	18	15 or less
	65	15	10 or less

LEY25 $\square E$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]					
40					$40^{\circ} \mathrm{C}$ or less	50 or less	100	No restriction
:---	:---	:---	:---					

LEY32 $\square E$

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 70 or less | 100 | No restriction |
| :--- | :---: | :---: | :---: |

LEY40 $\square E$

[^0]<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed $[\mathrm{mm} / \mathrm{s}]$	Pushing force (Setting input value)
LEY16 $\square \mathbf{E}$	A/B/C	21 to 50	45 to 65%
LEY25 $\square \mathbf{E}$	A/B/C	21 to 35	40 to 50%
LEY32 $\square \mathbf{E}$	A	24 to 30	50 to 70%
	$\mathrm{~B} / \mathrm{C}$	21 to 30	
LEY40 $\square \mathbf{E}$	A	24 to 30	21 to 30

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY16 \square			LEY25 $\square \mathbf{E}$			LEY32 $\square \mathbf{E}$			LEY40 $\square \mathbf{E}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load $[\mathrm{kg}]$	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	65%				50%				70%			
65%												

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Graph of Allowable Lateral Load on the Rod End (Guide)

* The changes in the graph waveforms are due to the difference in components of different product strokes.
$[$ Stroke $]=[$ Product stroke $]+[$ Distance from the rod end to the
center of gravity of the workpiece $]$

Rod Displacement: δ [mm]

Size	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{1 6}$	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 , 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
16	$\pm 1.1^{\circ}$
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
40	

Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

LEY-X5 Series \downarrow p. 913 25A-LEY Series $>$ p. 983

Selection Procedure

Positioning Control Selection Procedure

Selection Example

Operating conditions	•Workpiece mass: 4 [kg] $\quad \bullet$ Speed: $100[\mathrm{~mm} / \mathrm{s}]$ \bullet Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ \bullet Stroke: $200[\mathrm{~mm}]$ \bullet Workpiece mounting condition: Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY16B can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to the horizontal work load in the specifications

<Speed-Vertical work load graph> (LEY16/Step motor) on pages 463 and 464 and the precautions.

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=\mathbf{2 . 2 3 3}[\mathbf{s}]$
Based on the above calculation result, the LEY16B-200 should be selected.
427

Selection Procedure

Pushing Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)	•Duty ratio: $20[\%]$
-Attachment weight: $0.2[\mathrm{~kg}]$	•Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Pushing force: $60[\mathrm{~N}]$	•Stroke: $200[\mathrm{~mm}]$

Check the duty ratio.

<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio while referencing the conversion table of pushing force-duty ratio.
Selection example)
Based on the table below,
-Duty ratio: 20 [\%]
The pushing force set value will be 70 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Step motor)

Pushing force set value [\%]	Duty ratio $[\%]$	Continuous pushing time [min]
40 or less	100	No restriction
50	70	12 or less
70	20	1.3 or less
85	15	0.8 or less

* [Pushing force set value] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force.

<Force conversion graph>
Select a model based on the pushing force set value and force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Pushing force set value: 70 [\%]
-Pushing force: 60 [N]
The LEY16B can be temporarily selected as a possible candidate.

*1 Set values for the controller

Step 3

Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY16 \square, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.2[\mathrm{~kg}] \approx 2[\mathrm{~N}]$
- Product stroke: 200 [mm]

The lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16B-200 should be selected.

<Graph of allowable lateral load on the rod end>

LEY/25A-LEY Series

Speed-Work Load Graph (Guide)
 For Step Motor (Servo/24 VDC) JXC $\square 1$, LECP1

Refer to page 430 for the LECPA, JXC \square_{3}^{2} and page 431 for the LECA6.

Horizontal

LEY25 \square

LEY32 \square
Z 7 for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

Vertical

LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}
Refer to page 429 for the JXC $\square 1$, LECP1 and page 431 for the LECA6.

Horizontal

LEY25 \square

Vertical
LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

LEY/25A-LEY Series

Speed-Work Load Graph (Guide)

Refer to page 429 for the JXC $\square 1$, LECP1 and page 430 for the LECPA, JXC \square_{3}^{2}.
For Servo Motor (24 VDC) LECA6

Horizontal

LEY16 \square A

LEY25 \square A

Vertical

LEY16 \square A

LEY25 \square A

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Workpiece
Center of gravity

* The changes in the graph waveforms are due to the difference in components of different product strokes.

Rod Displacement: δ [mm]

Stroke Size	30	50	100	150	200	250	300	350	400	450	500	$\stackrel{C}{+}$	
16	± 0.4	± 0.5	± 0.9	± 0.8	± 1.1	± 1.3	± 1.5	-	-	-	-		
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-		-
32, 40	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8		

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
16	$\pm 1.1^{\circ}$
25	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$
40	

Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Force Conversion Graph (Guide)

Step Motor (Servo/24 VDC)

LEY16

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0}^{\circ} \mathbf{C}$	40 or less	100	No restriction
	50	70	12 or less
	70	20	1.3 or less
	85	15	0.8 or less

LEY25

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 | No restriction |
| :--- | :---: | :---: | :---: |

LEY32

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0} \mathbf{C}$	65 or less	100	No restriction
	85	50	15 or less

LEY40

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]					
$\mathbf{4 0} \mathbf{0}^{\circ} \mathbf{C}$ or less	65 or less	100	No restriction		$40^{\circ} \mathrm{C}$ or less	65 or less	100	No restriction
:---:	:---:	:---:	:---:					

Servo Motor (24 VDC)

LEY16 \square A

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$40^{\circ} \mathrm{C}$ or less	95 or less	100	No restriction

LEY25 \square A

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>
Without Load

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Lead	Pushing speed [mms]	Pushing force (Setting input value)
LEY16	A/B/C	21 to 50	60 to 85%	LEY16■A	A/B/C	21 to 50	80 to 95%
LEY25	A/B/C	21 to 35	50 to 65\%	LEY25■A	A/B/C	21 to 35	80 to 95%
LEY32	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEY40	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation). If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY16口			LEY25			LEY32 \square			LEY40 \square			LEY16■A			LEY25■A		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28	1	1.5	3	1.2	2.5	5
Pushing force	85\%			65\%			85\%			65\%			95\%			95\%		

Rod Type
LEY/LEY-X5/25A-LEY Series DustightWaterjeteproof (IP65 Equvaen)

Selection Procedure

Positioning Control Selection Procedure

Selection Example

Operating conditions	-Workpiece mass: 16 [kg] •Speed: 300 [mm/s] - Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$] - Stroke: 300 [mm] -Workpiece mounting condition: Vertical upward downward transfer	

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY25B can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer.

<Speed-Vertical work load graph>
(LEY25) on pages 475 to 477,486 , and 927 and the precautions.

The regeneration option may be necessary. Refer to pages 435 and 436 for the "Required Conditions for the Regeneration Option."

Check the cycle time.

Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)

L : Stroke [mm] \cdots (Operating condition)
V : Speed [mm/s] … (Operating condition)
a1: Acceleration [mm/s²] \cdots (Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$] \cdots (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed

T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05[\mathrm{~s}]$
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathbf{s}]$

Selection Procedure

Force Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle

Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)	•Duty ratio: $60[\%]$
-Attachment weight: $0.5[\mathrm{~kg}]$	•Speed: $100[\mathrm{~mm} / \mathrm{s}]$
- Force: $255[\mathrm{~N}]$	•Stroke: $300[\mathrm{~mm}]$

Check the duty ratio.

<Conversion table of force-duty ratio>
Select the [Force] from the duty ratio while referencing the conversion table of force-duty ratio.
Selection example)
Based on the table below,

- Duty ratio: 60 [\%]

Torque limit/Command value will be 30 [\%].
<Conversion table of force-duty ratio>
(LEY25/AC Servo motor)

Torque limit/ Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
25 or less	100	No restriction
30	60	1.5 or less

* [Torque limit/Command value [\%]] is the set value for the driver.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing

Step 2

Check the force.

<Force conversion graph>

Select a model based on the torque limit/command value and pushing force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,

- Torque limit/Command value: 30 [\%]
- Force: 255 [N]

The LEY25B can be temporarily selected as a possible candidate.

Step 3 Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>

Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$
- Product stroke: 300 [mm]

The lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY25S2B-300 should be selected.

LEY/LEY-X5/25A-LEY Series

AC Servo Motor

Speed-Vertical Work Load Graph/Required Conditions for the Regeneration Option

LEY25 $\square \mathbf{S}_{6}^{2} / T 6$ (Motor mounting position: Parallel/In-line)

LEY32 $\square S_{7}^{3} / T 7$ (Motor mounting position: Parallel)

LEY63 $\square \mathrm{S}_{8}^{4} / \mathrm{T8}$ (Motor mounting position: Parallel/In-line)

LEY100 \square T9 (Motor mounting position: Parallel/In-line)

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model	Note
LEY25 \square	LEC-MR-RB-032	-
LEY32 \square	LEC-MR-RB-032	-
LEY63 \square	LEC-MR-RB-12	-
LEY100 \square	LEC-MR-RB-032	A area
	LEC-MR-RB-12	B] area
		C] area

LEY32DS ${ }_{7}^{3} /$ T7 (Motor mounting position: In-line)

Model Selection LEY/LEY-X5/25A-LEY Series

Speed-Horizontal Work Load Graph/Required Conditions for the Regeneration Option

LEY32 $\square S_{7}^{3} /$ T7 (Motor mounting position: Parallel)

LEY63 $\square S_{8}^{4} /$ T8 (Motor mounting position: Parallel/In-line)

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model	Note
LEY25 \square	LEC-MR-RB-032	-
LEY32 \square	LEC-MR-RB-032	-
LEY63 \square	-	-
LEY100 \square	LEC-MR-RB-032	A area

LEY32DS ${ }_{7}^{3} /$ T7 (Motor mounting position: In-line)

LEY100 \square T9 (Motor mounting position: Parallel/In-line)

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]															
		Symbol	[mm]	30	50	100	150	200	250	300	350	400	450	500	600	700	800	900	1000
$\left(\begin{array}{c} \text { LEY25 } \square \mathbf{S}_{6}^{2} / \mathbf{T 6} \\ \text { Motor mounting position: } \\ \text { Parallel/In-line } \end{array}\right)$	$\begin{aligned} & 100 \mathrm{~W} \\ & \square \square 40 \end{aligned}$	A	12	900							600		-	-	-				
		B	6				450						-	-			-		
		C	3				225						-	-			-		
		(Motor rotaion speed)		(4500 rpm)							(3000	rpm)	-	-	-				
$\left(\begin{array}{c} \text { LEY } 32 \square \mathbf{S H}_{7}^{3} / \mathrm{T7} \\ \text { Motor mounting position: } \\ \text { Parallel } \end{array}\right)$	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1200									800		-				
		B	10	600									400				-		
		C	5	300									200		-				
		(Motor rotation speed)		(3600 rpm)									(2400 rpm)		-				
$\begin{gathered} \text { LEY32DS }{ }_{7}^{3 / T 7} \\ \binom{\text { Motor mounting position: }}{\text { In-line }} \end{gathered}$	$\begin{gathered} 200 \mathrm{~W} \\ / \square 60 \end{gathered}$	A	16	1000									640		-				
		B	8	500									320		-				
		C	4					250									-		
		(Motor roation speed)		(3750 rpm)									(2400 rpm)		-				
LEY63 $\square S_{8}^{4} /$ T8 (Motor mounting position:) Parallel/In-line	$\begin{gathered} 400 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	-	1000										800	600	500	-	
		B	10	-	500										400	300	250	-	
		C	5	-	250										200	150	125	-	
		(Motor rotation speed)		-	(3000 rpm)										(2400 pmm) (1800 pmm) (1500 rmm)			-	
		L*1	2.86	-	70													-	
		(Motor rotation speed)		-	(1470 rpm)													-	
LEY100 \square T9 (Motor mounting position:) Parallel/In-line	$\begin{gathered} 750 \mathrm{~W} \\ / \square 80 \end{gathered}$	B	10	-		500									371	285	225	183	151
		D	3.3	-		167									124	95	75	61	50
		(Motor rotation speed)		-		100									74	57	45	37	30
				-		(3000 rpm)									(2225 rmm)	(1708 rpm)	(1353 rmm)	(1098 rmm)	(908 rpm)

LEY/LEY-X5/25A-LEY Series

AC Servo Motor
Size 25, 32, 63, 100
Dust-tightWater-jet-proof (IP65 Equivalent)
Secondary Battery Compatible

Force Conversion Graph (Guide)

For the LECSA

LEY25 $\square \mathbf{S 2}$ (Motor mounting position: Parallel/ln-line)

LEY32 \square S3 (Motor mounting position: Parallel)

LEY32DS3 (Motor mounting position: In-line)

LEY63 \square S4 (Motor mounting position: Parallel//n-line)

Model Selection LEY/LEY-X5/25A-LEY Series

Size 25, 32, 63, 100 Dust-tight/Water-jet-proof (IP65 Equvalen)
Secondary Battery Compatible

Force Conversion Graph (Guide)

For the LECS \square-T

LEY25 \square T6 (Motor mounting position: Parallel/ln-line)

LEY32 \square T7 (Motor mounting position: Parallel)

LEY63 \square T8 (Motor mounting position: Parallel/ln-line)

LEY100 \square T9 (Motor mounting position: Parallel/In-line)

LEY32DT7 (Motor mounting position: In-line)

LEY/LEY-X5/25A-LEY Series

Load-Acceleration/Deceleration Graph

* The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

Max. Acceleration/Deceleration (Horizontal)

Max. Acceleration/Deceleration (Vertical)

Force-Stroke Graph

The values shown below are allowable values of the actuator body. Do not use the actuator so that it exceeds these specification ranges.

Force and Stroke

Graph of Allowable Lateral Load on the Rod End (Guide)

* The changes in the graph waveforms are due to the difference in components of different product strokes.
[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: δ [mm]

Size Stroke	30	50	100	150	200	250	300	350	400	450	500	600	700	800	900
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-	-
$\mathbf{3 2}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-	-
$\mathbf{6 3}$	-	± 0.5	± 0.7	± 0.9	± 1.2	± 1.1	± 1.3	± 1.5	± 1.7	± 1.9	± 2.1	± 1.7	± 2.0	± 2.2	-
$\mathbf{1 0 0}$	-	-	± 0.8	-	± 1.3	-	± 1.9	-	± 2.4	-	± 2.9	± 3.5	± 4.0	± 4.5	± 5.1

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
25	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$
$\mathbf{6 3}$	$\pm 0.6^{\circ}$
$\mathbf{1 0 0}$	$\pm 0.6^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Rod Type
LEY/LEY-X5/25A-LEY Series DustrightWater-jetproof (P65 Equvaen)
Secondary Battery Compatible
Model Selection ${ }^{25,32,63}$
LEY Series \downarrow p. 489 LECS \square Series \downarrow p. 473, 485
LEY-X5 Series $>$ p. 931 25A-LEY Series $>$ p. 989

Selection Procedure

Positioning Control Selection Procedure

Step 1
Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating

-Workpiece mass: $16[\mathrm{~kg}] \quad$ Speed: 300 [mm/s] - Acceleration/Deceleration: 5000 [mm/s²] - Stroke: 300 [mm] -Workpiece mounting condition: Vertical upward downward transfer	W

Check the work load-speed. <Speed-Vertical work load graph>
Select a model based on the workpiece mass and speed while referencing the speed-vertical work load graph.
Selection example) The LEY25B can be temporarily selected as a possible candidate based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer.

<Speed-Vertical work load graph>
(LEY25) on pages 491 and 492 and the precautions.
The regenerative resistor may be necessary. Refer to pages 443 and 444 for the "Required Conditions for the Regenerative Resistor (Guide)."

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method. Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be found by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L: Stroke [mm] \cdots (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
$\mathrm{T} 4=0.05$ [s]
The cycle time can be found as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11$ [s]

Selection Procedure

Control Selection Procedure

The duty ratio is a ratio of the operation time in one cycle.

Selection Example

Operating conditions

- Mounting condition: Horizontal (pushing)	-Duty ratio: $60[\%]$
- Attachment weight: $0.5[\mathrm{~kg}]$	•Pushing speed: $35[\mathrm{~mm} / \mathrm{s}]$

Check the duty ratio.

<Conversion table of force-duty ratio>

Select the [force] from the duty ratio while referencing the conversion table of force-duty ratio.

Selection example)
Based on the table below,

- Duty ratio: 60 [\%]

Torque limit/command value will be 90 [\%].
<Conversion table of force-duty ratio>
(LEY25/AC Servo motor)

Torque limit/ Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
75 or less	100	No restriction
90	60	1.5 or less

* [Force set value] is one of the data input to the driver.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2

Check the pushing force.

<Force conversion graph>
Select a model based on the torque limit/command value and pushing force while referencing the force conversion graph.
Selection example)
Based on the graph shown on the right side,
-Torque limit/Command value: 90 [\%]

- Force: 255 [N]

The LEY25B can be temporarily selected as a possible candidate.

<Force conversion graph>
(LEY25)

Step 3 Check the lateral load on the rod end.

<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY25B, which has been selected temporarily while referencing the graph of allowable lateral load on the rod end.
Selection example)
Based on the graph shown on the right side,

- Attachment weight: $0.5[\mathrm{~kg}] \approx 5[\mathrm{~N}]$
- Product stroke: 300 [mm]

The lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY25V6B-300 should be selected.

LEY/LEY-X5/25A-LEY Series

Speed-Work Load Graph/Required Conditions for the Regenerative Resistor (Guide)
LEY25 \square V6 (Motor mounting position: Parallel/In-line)

Vertical

LEY32 \square V7 (Motor mounting position: Parallel)

Vertical

LEY32DV7 (Motor mounting position: In-line)

Vertical

Regenerative resistor area

* When using the actuator in the regenerative resistor area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* The regenerative resistor should be provided by the customer.

Applicable Motors/Drivers

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEY25 \square	SGMJV-01A3A	SGDV-R90A11ロ (LECYM2-V5) SGDV-R90A21ロ (LECYU2-V5)
LEY32 \square	SGMJV-02A3A	SGDV-1R6A11 SGDV-1R6A21 (LECYM2-V7) (LECYU2-V7)

Speed-Work Load Graph/Required Conditions for the Regenerative Resistor (Guide)

LEY63 \square V8 (Motor mounting position: Parallel/In-line)

Horizontal

Regenerative resistor area

* When using the actuator in the regenerative resistor area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
The regenerative resistor should be provided by the customer.

Vertical

Applicable Motors/Drivers

Product no.	Applicable model	
	Motor	Servopack (SMC driver)
LEY63 \square	SGMJV-04A3A	SGDV-2R8A11ロ (LECYM2-V8) SGDV-2R8A21 \square (LECYU2-V8)

Allowable Stroke Speed

[mm/s]

LEY/LEY-X5/25A-LEY Series

Force Conversion Graph (Guide)

LEY25■V6 (Motor mounting position: Parallel/ln-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
75 or less	100	No restriction
90	60	1.5 or less

LEY32 \square V7 (Motor mounting position: Parallel)

LEY32DV7 (Motor mounting position: In-line)

LEY63■V8 (Motor mounting position: Parallel//n-line)

Graph of Allowable Lateral Load on the Rod End (Guide)

* The changes in the graph waveforms are due to the difference in components of different product strokes.
[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Rod Displacement: $\delta[\mathrm{mm}]$

Size Stroke	30	50	100	150	200	250	300	350	400	450	500	600	700	800
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-	-	-	-
$\mathbf{3 2}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8	-	-	-
$\mathbf{6 3}$	-	± 0.5	± 0.7	± 0.9	± 1.2	± 1.1	± 1.3	± 1.5	± 1.7	± 1.9	± 2.1	± 1.7	± 2.0	± 2.2

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
25	$\pm 0.8^{\circ}$
32	$\pm 0.7^{\circ}$
63	$\pm 0.6^{\circ}$

Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Rod Type

LEY Series LEY16, 25, 32, 40

RoHS

* For details, refer to page 1343 and onward.

For details on controllers, refer to the next page.

1 Size
16
25
32
40

(2) Moto	or mounting positio	Motor cover direction
Symbol	Motor mounting position	Motor cover direction
Nil	Top side parallel	-
D	In-line	-*1
D1		Left*2
D2		Right*2
D3		Top*2
D4		Bottom*2

4 Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
C	2.5	3	4

5 Stroke $^{* 3}[\mathrm{~mm}]$		
Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{3 0 0}$	$\mathbf{1 6}$	$30,50,100,150,200,250,300$
$\mathbf{3 0}$ to $\mathbf{4 0 0}$	$\mathbf{2 5}$	$30,50,100,150,200,250,300$, 350,400
$\mathbf{3 0}$ to 500	$\mathbf{3 2 / 4 0}$	$30,50,100,150,200,250,300$, $350,400,450,500$

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Mounting*5

Symbol	Type	Motor mounting position		
		Parallel	In-line	
Nil	Ends tapped/ Body bottom tapped*6	\bullet	\bullet	
L	Foot	\bullet	-	
F	Rod flange*6	$\bullet * 8$	\bullet	
G	Head flange*6	$\bullet * 9$	-	
D	Double clevis*7	\bullet	-	

Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 10}$
R1	1.5	RA	$10^{* 10}$
R3	3	RB	$15^{* 10}$
R5	5	RC	$20^{* 10}$

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.
*7 For the mounting of the double clevis type, use the actuator within the following stroke range
. LEY16: 100 or less . LEY25: 200 or less . LEY32/40: 200 or less
*8 The rod flange type is not available for the LEY16 with strokes of 50 mm or less and LEY40 with strokes of 30 mm or less, and motor option "With lock/motor cover."
*9 The head flange type is not available for the LEY32/40.
*10 Produced upon receipt of order
*11 The DIN rail is not included. It must be ordered separately.
*12 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or "5" for parallel input.
The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEY25EB-100

Refer to the Operation Manual for using the products.
Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	input type with STO subb-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	EtherNetIIPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Power supply voltage	24 VDC										
Reference page	1017	1063									

Specifications

Battery－less Absolute（Step Motor 24 VDC）

Model				LEY16口E			LEY25 $\square \mathrm{E}$			LEY32 $\square \mathrm{E}$			LEY40 $\square \mathrm{E}$		
Actuator specifications	Work load ［kg］＊1	Horiz	（ 3000 ［mm／s $\left.{ }^{2}\right]$ ）	6	17	30	20	40	60	30	45	60	50	60	80
		Horizonta	（ $\left.2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	10	23	35	30	55	70	40	60	80	60	70	90
		Vertical	（ 3000 ［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ ）	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force［ N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s］${ }^{* 4}$			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			3000											
	Pushing speed［mm／s］＊5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02											
	Lost motion［mm］＊6			0.1 or less											
	Screw lead［mm］			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 7}$			50／20											
	Actuation type			Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）											
	Guide type			Sliding bushing（Piston rod）											
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40											
	Operating humidity range［\％RH］			90 or less（No condensation）											
	Enclosure			IP40（Excludes the operation hole for the manual override screw on the motor cover when motor option＂C＂or ＂W＂is selected for motor type＂Nil＂）											
	Motor size				$\square 28$		$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery－less absolute（Step motor 24 VDC）											
	Encoder			Battery－less absolute											
	Power supply voltage［V］			24 VDC $\pm 10 \%$											
	Power［W］${ }^{* 8 * 10}$			Max．power 43			Max．power 48			Max．power 104			Max．power 106		
－	Type＊9			Non－magnetizing lock											
或	Holding force［N］			20	39	78	78	157	294	108	216	421	127	265	519
皆：	Power［W］＊10			2.9			5			5			5		
－	Rated voltage［V］			24 VDC $\pm 10 \%$											

＊1 Horizontal：The maximum value of the work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check the＂Model Selection＂on pages 422 and 423.
Vertical：Speed changes according to the work load．Check the＂Model Selection＂on pages 421 and 423.
The values shown in（ ）are the acceleration／deceleration．
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
$* 2$ Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The pushing force values for LEY16 \square E are 20% to 65% ，for LEY25 \square E are 30% to 50% ，for LEY32 $\square E$ are 30% to 70% ，and for LEY40 $\square E$ are 35% to 65% ． The pushing force values change according to the duty ratio and pushing speed．Check the＂Model Selection＂on page 424.
＊4 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊5 The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or less．
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Indicates the max．power during operation（including the controller）．This value can be used for the selection of the power supply．
＊9 With lock only
＊10 For an actuator with lock，add the power for the lock．

Weight

Weight: Top Side Parallel Motor Type

Series	LEY16E							LEY25E									LEY32E										
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.75	0.79	0.9	1.04	1.15	1.26	1.37	1.21	1.28	1.45	1.71	1.89	2.06	2.24	2.41	2.59	2.13	2.24	2.53	2.81	3.21	3.5	3.78	4.07	4.36	4.64	4.93
Series	LEY40E																										
Stroke [mm]	30	50	100	150	200	250	300	350	400	450	500																
Product weight [kg]	2.44	2.55	2.84	3.12	3.52	3.81	4.09	4.38	4.67	4.95	5.24																

Weight: In-line Motor Type

Series	LEY16DE							LEY25DE									LEY32DE										
Stroke [mm]	30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	0.72	0.76	0.87	1.01	1.12	1.23	1.34	1.2	1.27	1.44	1.7	1.88	2.05	2.23	2.4	2.58	2.12	2.23	2.52	2.8	3.2	3.49	3.77	4.06	4.35	4.63	4.92

Series	LEY40DE										
Stroke [mm]	30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	2.43	2.54	2.83	3.11	3.51	3.8	4.08	4.37	4.66	4.94	5.24

Additional Weight

Additional Weight

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock/Motor cover	0.16	0.29	0.57	0.57	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.06	0.08	0.14	0.14	
	Rod flange (including mounting bolt)	0.13	0.17	0.20	0.20
	Head flange (including mounting bolt)				
Double clevis (including pin, retaining ring, and mounting bolt)	0.08	0.16	0.22	0.22	

LEY Series

Construction

25
Top side parallel motor type: LEY 32E
40

Top side parallel motor type, With lock/motor cover

Top side parallel motor type: LEY16E

Construction

In-line motor type: LEY16DE

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	-	
24	Motor cover	Aluminum alloy	Anodized/LEY16 only
	Synthetic resin		
25	Grommet	Synthetic resin	Only "With motor cover"

No.	Description	Material	Note
$\mathbf{2 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{2 8}$	Hub	Aluminum alloy	
$\mathbf{2 9}$	Spider	NBR	
$\mathbf{3 0}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{3 1}$	Cover support	Aluminum alloy	Only "With lock/motor cover"/LEY25, 32, 40
$\mathbf{3 2}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 3}$	Nut	Alloy steel	Zinc chromating
$\mathbf{3 4}$	End cover	Aluminum alloy	Anodized/LEY16 only
$\mathbf{3 5}$	Rubber bushing	NBR	LEY16 only

Replacement Parts (Top side parallel only)/Belt

No.	Size	Order no.
20	16	LE-D-2-7
	25	LE-D-2-2
	32,40	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Top Side Parallel Motor

Size	Stroke range	A	B	C	D	EH	EV	H	J	K	L	M	O	R	S	T	T2	U	V			Y
	[mm]	A	B	C	D			H	J	K	L	M		R	S	T	T2	U	V	Without lock	With lock	Y
16	30 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	90.5	-	0.5	28	100.5	145.5	22.5
	105 to 300	121	110.5																			
25	30 to 100	130.5	116	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	46	92	7.5	1	42	88.5	129	26.5
	105 to 400	155.5	141																			
32	30 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	98.5	141.5	34
	105 to 500	178.5	160																			
40	30 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	8.5	1	56.4	120.5	163.5	34
	105 to 500	178.5	160																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31						
	105 to 300			62	46		60				
25	30 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100				41						
	105 to 120			42			75				
	125 to 200			59	49.5						
	205 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						

Dimensions: Top Side Parallel Motor

25 A
With lock/motor cover: LEY 32EB- \square W
40 C

A
With motor cover: LEY16EB- $\square \mathrm{C}$

A
With lock/motor cover: LEY16EB- $-\square \mathbf{W}$

LEY Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
*5 Refer to page 456 for motor cover dimensions of the LEY16.

Size	Stroke range [mm]	A		B	C	CL	CV	D	EH	EV	H	J	K	L	M	O1	R	S	T	T2	U	X2		Y
		Without lock	With lock																			Without lock	With lock	
16	30 to 100	186.5	231.5	94	10	-	* 6											*5						
	105 to 300	206.5	251.5	114			-	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	35.5	-	0.5	82	127	26
25	30 to 100	198.5	239	115.5	13	46	54.5	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	7.5	1.5	68.5	109	26
	105 to 400	223.5	264	140.5			54.5	20	44	45.5	M8x 1.25	24	17	14.5	34	M5 $\times 0.8$	8	45	46.5	7.5	1.5	68.5	109	26
32	30 to 100	220	263	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	8.5	1	73.5	116.5	32
	105 to 500	250	293	158																				
40	30 to 100	242	285	128	13	60	69.5	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	8.5	1	95.5	138.5	32
	105 to 500	272	315	158																				

*6 Refer to page 456.
Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	105 to 300		62	46		60				
25	30 to 35	20	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100					50				
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100									
	105 to 120		36	43		80				
	125 to 200		53	51.5						
	205 to 500		70	60						

Dimensions: In-line Motor

With lock/motor cover: LEY $\begin{gathered}25 \\ 32 \mathrm{DE} \\ \mathbf{C}\end{gathered}$

A
With motor cover: LEY16D $\square E B-\square C$ C

*1 Refer to the table below.

Motor Cover Direction

CV Dimensions (Size 16)

Motor cover direction	$\mathbf{C V}$
\mathbf{D}_{1}	35.5
\mathbf{D}_{2}	35.5
\mathbf{D}_{3}	48.3
\mathbf{D}_{4}	40.2

LEY Series

Dimensions

$[\mathrm{mm}]$								
Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\boldsymbol{\varnothing D}$	$\mathbf{H}_{\mathbf{1}}$	\mathbf{K}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	16	5	14	24.5	14	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	25	8	22	42.0	23.5	$\mathrm{M} 14 \times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Foot: $\operatorname{LEY}_{32}^{16}{ }_{30}^{25} \underset{C}{\text { A }}-\square \square \square L$
 40

Included parts
• Foot bracket
• Body mounting bolt

Outward mounting

Foot

Material: Carbon steel (Chromating)

* The A measurement is when the unit is in the original position. At this position, 2 mm at the end.

457

Battery-less Absolute (Step Motor 24 VDC)

Dimensions

Rod flange: LEY16 $\square E B-\square \square \square F$

25 A
Rod flange: LEY ${ }_{40}^{25} \square E \mathrm{C}-\square \square \square \mathrm{F}$

25 A
Double clevis: LEY 32 EB- $\square \square \square$ D

SSMC

A
Head flange: LEY16EB- $\square \square \square G$

A Head flange: LEY25EB- $\square \square \square G$

* The head flange type is not available for the LEY32/40.

Included parts
- Flange
- Body mounting bolt

Rod/Head Flange
[mm]

Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

Included parts
Double clevis
Body mounting bolt
Clevis pin
Retaining ring

* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.
Double Clevis

Size	Stroke range [mm]	A		CL	CB	CD	CT
16	30 to 100	128		119	20	8	5
25	30 to 100	160.		150.5	-	10	5
	105 to 200	185.		175.5			
32	30 to 100	180.		170.5	-	10	6
40	105 to 200	210.		200.5			
Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
16	30 to 100	12	18	8	16	10.5	9
25	30 to 100	14	20	18	36	14.5	10
	105 to 200						
32	30 to 100	14	22	18	36	18.5	10
40	105 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

Lead [mm]

Symbol	LEY16	LEY25	LEY32/40
A	10	12	16
B	5	6	8
\mathbf{C}	2.5	3	4

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

8 Mounting ${ }^{* 3}$

Symbol	Type	Motor mounting position	
		Parallel	In-line
$\mathbf{N i l}$	Ends tapped/Body bottom tapped*4	\bullet	\bullet
\mathbf{L}	Foot bracket	\bullet	-
\mathbf{F}	Rod flange $* 4$	$\bullet^{* 6}$	\bullet
\mathbf{G}	Head flange*4	$\bullet^{* 7}$	-
\mathbf{D}	Double clevis*5	\bullet	-

6 Motor option*2

Nil	Without option
C	With motor cover
B	With lock
W	With lock/motor cover

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

(1 rod end nut is included.)

- Standard

Applicable Stroke Table*1

Model Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range
LEY16	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-	10 to 300
LEY25	\bigcirc	-	-	15 to 400								
LEY32/40	\bigcirc	-	\bigcirc	20 to 500								

(3) Motor type

Symbol	Type	Applicable size			Compatible controllers/drivers	
		LEY16	LEY25	LEY32/40		
Nil	Step motor (Servo/24 VDC)	-	-	-	JXC51	JXCEF
					JXC61	JXC9F
					JXCE1	JXCPF
					JXC91	JXCLF
					JXCP1	
					JXCD1	LECP1
					JXCL1	LECPA
					JXCM1	
A	Servo motor (24 VDC)	\bigcirc	\bigcirc	-		A6

(9) Actuator cable type/length*9

Standard cable [m] Robotic cable

Nil	None
S1	$1.5^{* 11}$
S3	$3^{* 11}$
S5	$5^{* 11}$

Robotic cable			
R1	1.5	RA	$10^{* 8}$
R3	3	RB	$15^{* 8}$
R5	5	RC	$20^{* 8}$
R8	$8^{* 8}$		

Communication plug connector, I/O cable*16

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable (1.5 m)	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

$L E C \square$ Series (For details, refer to page 461.)

10 Controller/Driver type ${ }^{* 10}$

Nil	Without controller/driver	
6N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*11 (Programless type)	NPN
1P		PNP
AN	LECPA*11*12 (Pulse input type)	NPN
AP		PNP

(11) I/O cable length ${ }^{* 13}$

Nil	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 14}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 14}$

12 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail*15

*1 Please contact SMC for non-standard strokes as they are produced as special orders. *2 When "With lock" or "With lock/motor cover" is selected for the top/ right/left side parallel motor types, the motor body will stick out from the end of the body for size $16 / 40$ with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*3 The mounting bracket is shipped together with the product but does not come assembled.
*4 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. LEY25: 200 mm or less -LEY32/40: 100 mm or less
*5 For the mounting of the double clevis type, use the actuator within the following stroke range. LEY16: 100 mm or less. LEY25: 200 mm or less .LEY32/40: 200 mm or less
*6 The rod flange type is not available for the LEY16/40 with a 30 mm stroke and motor option "With lock," "With lock/motor cover."
*7 The head flange type is not available for the LEY32/40.
*8 Produced upon receipt of order (Robotic cable only)
*9 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.
Refer to pages 1092 and 1093 if only the actuator cable is required

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*10 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
*11 Only available for the motor type "Step motor"
*12 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*13 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*14 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*15 The DIN rail is not included. It must be ordered separately.
*16 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the "Operation Manual" for using the products. Please download it via our website: https://www.smcworld.com

LEY Series

Compatible Controllers/Drivers

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	LECA6	LECP1	LECPA
Features	Parallel I/O	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Max. number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	1017	1031	1042	1057

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Step Motor (Servo/24 VDC)

Model				LEY16			LEY25			LEY32			LEY40		
Actuator specifications	Work load $[\mathrm{kg}]^{* 1}$	$\begin{aligned} & \text { Horizontalal } \\ & \text { (JXXCD, } \\ & \text { JXCCF, } \\ & \text { LEPP1) } \end{aligned}$	(3000 [mm/s²])	6	17	30	20	40	60	30	45	60	50	60	80
			(2000 [mm/s²])	10	23	35	30	55	70	40	60	80	60	70	90
		$\begin{aligned} & \text { Horizontal } \\ & (\text { LECPA, } \\ & \left.\mathrm{JCC} \square{ }_{3}^{2}\right) \end{aligned}$	(3000 [mm/s²])	4	11	20	12	30	30	20	40	40	30	60	60
			(2000 [mm/s²])	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	(3000 [mm/s²])	2	4	8	8	16	30	11	22	43	13	27	53
	Pushing force [N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s] ${ }^{*}$	JXC $\square 1 / L E C P 1$ LECPA/JXC $\square \frac{2}{3}$		15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
											12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)											
	Guide type			Sliding bushing (Piston rod)											
	Operating t			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Enclosure			IP40 (Excludes the operation hole for the manual override screw on the motor cover when motor option "C" or "W" is selected for motor type "Nil")											
\%	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental											
	Power supply voltage [V]			24 VDC $\pm 10 \%$											
	Power [W]*8*10			Max. power 43			Max. power 48			Max. power 104			Max. power 106		
${ }_{6}^{8}$ Type*9				Non-magnetizing lock											
道				20	39	78	78	157	294	108	216	421	127	265	519
发: Power [W]*10				2.9			5			5			5		
${ }_{5}^{5}$ Rated voltage [V]				24 VDC $\pm 10 \%$											

*1 Horizontal: The max. value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check the "Model Selection" on pages 429 and 430.
Vertical: Speed changes according to the work load. Check the "Model Selection" on pages 429 and 430.
The values shown in () are the acceleration/deceleration.
Set these values to be 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ or less.
$* 2$ Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEY16 \square are 35% to 85%, for LEY25 \square are 35% to 65%, for LEY32 \square are 35% to 85%, and for LEY $40 \square$ are 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 432.
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*5 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.

Specifications

Servo Motor (24 VDC)

Model			LEY16 \square A			LEY25 \square A		
	Work load	Hoizotal ($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right.$])	3	6	12	7	15	30
	[kg] ${ }^{* 1}$	Vertical ($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right.$])	2	4	8	3	6	12
	Pushing	force [N$]^{* 2 * 3}$	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed [[mm/s]	1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max. accelera	andideceleration [mm/s²]	3000					
	Pushing	speed [mm/s] ${ }^{* 4}$	50 or less			35 or less		
	Positioning	repeatability [mm]	± 0.02					
	Lost mo	tion [mm]*5	0.1 or less					
	Screw le	ead [mm]	10	5	2.5	12	6	3
	ImpactVibration	tion resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{* 6}$	50/20					
	Actuatio	on type	Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)					
	Guide	ype	Sliding bushing (Piston rod)					
	Operating te	mperature range [$\left.{ }^{\circ} \mathrm{C}\right]$	5 to 40					
	Operating h	humidity range [\%RH]	90 or less (No condensation)					
	Enclosu		IP40 (Excludes the operation hole for the manual override screw on the motor cover when motor option " C " or "W" is selected for motor type "Nil")					
	Motor s		$\square 28$			$\square 42$		
	Motor 0	utput [W]	30			36		
	Motor ty	ype	Servo motor (24 VDC)					
	Encode		Incremental					
	Power su	upply voltage [V]	24 VDC $\pm 10 \%$					
$\begin{array}{\|c\|} \mathbf{0} \\ \hline \mathbf{u} \\ \hline \end{array}$	Power [W]*7 *9	Max. power 59			Max. power 96		
\square	Type*8		Non-magnetizing lock					
或	Holding	force [N]	20	39	78	78	157	294
	Power [W]*9	2.9			5		
	Rated v	voltage [V]	24 VDC $\pm 10 \%$					

*1 Horizontal: The max. value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Check the "Model Selection" on page 431 for details. The values shown in () are the acceleration/ deceleration.
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY16A \square are 60% to 95% and for LEY25A \square are 70% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 432.
*4 The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
*5 A reference value for correcting errors in reciprocal operation *6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*8 With lock only
*9 For an actuator with lock, add the power for the lock.

Weight

Weight: Top/Right/Left Side Parallel Motor Type

Series		LEY16							LEY25									LEY32										
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.18	1.25	1.42	1.68	1.86	2.03	2.21	2.38	2.56	2.09	2.20	2.49	2.77	3.17	3.46	3.74	4.03	4.32	4.60	4.89
weight [kg]	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.14	1.21	1.38	1.64	1.82	1.99	2.17	2.34	2.52	-	-	-	-	-	-	-	-	-	-	-

Series		LEY40										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	2.39	2.50	2.79	3.07	3.47	3.76	4.04	4.33	4.62	4.90	5.19
	Servo motor	-	-	-	-	-	-	-	-	-	-	-

Weight: In-line Motor Type

	Series	LEY16D							LEY25D									LEY32D										
Stroke [mm]		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.17	1.24	1.41	1.67	1.85	2.02	2.20	2.37	2.55	2.08	2.19	2.48	2.76	3.16	3.45	3.73	4.02	4.31	4.59	4.88
weight [kg]	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.13	1.20	1.37	1.63	1.81	1.98	2.16	2.33	2.51	-	-	-	-	-	-	-	-	-	-	-
Series		LEY40D																										
Stroke [mm]		30	50	100	150	200	250	300	350	400	450	500																
Product weight [kg]	Step motor	2.38	2.49	2.78	3.06	3.46	3.75	4.03	4.32	4.61	4.89	5.18																
	Servo motor	-	-	-	-	-	-	-	-	-	-	-																

Additional Weight

Size		$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53	
Motor cover	0.02	0.03	0.04	0.05	
Lock/Motor cover	0.16	0.32	0.61	0.62	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.06	0.08	0.14	0.14	
Rod flange (including mounting bolt)		0.13	0.17	0.20	0.20
Head flange (including mounting bolt)					
Double clevis (including pin, retaining ring, and mounting bolt)		0.08	0.16	0.22	0.22

LEY Series

Construction

Top side parallel motor type: LEY $\begin{array}{r}16 \\ 32 \\ 40\end{array}, ~$

Top/Right/Left side parallel motor type With lock/motor cover

Construction

In-line motor type: With lock/motor cover

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating [Sizes 32 and 40 only]
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	-	

No.	Description	Material	Note
$\mathbf{2 4}$	Motor cover	Synthetic resin	Only "With motor cover"
$\mathbf{2 5}$	Grommet	Synthetic resin	Only "With motor cover"
$\mathbf{2 6}$	Motor block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{2 8}$	Hub	Aluminum alloy	
$\mathbf{2 9}$	Spider	NBR	
$\mathbf{3 0}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{3 1}$	Cover support	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{3 2}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 3}$	Nut	Alloy steel	Zinc chromating

Replacement Parts (Top/Right/Left side parallel only)/Belt

No.	Size	Order no.
20	16	LE-D-2-1
	25	LE-D-2-2
	$\mathbf{3 2 , 4 0}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LEY Series

Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)

Dimensions: Top/Right/Left Side Parallel Motor

	Stroke																		Step	motor	Servo	motor	Y
Size	range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V	W	X	W	X	
16	30 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	67.5	0.5	28	61.8	80.3	62.5	81	22.5
	105 to 300	121	110.5																				
25	30 to 100	130.5	116	13	20	44	45.5	M8x 1.25	24	17	14.5	34	M5 x 0.8	8	46	92	1	42	63.4	85.4	59.6	81.6	26.5
	105 to 400	155.5	141																				
32	30 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	68.4	95.4	-	-	34
	105 to 500	178.5	160																				
40	30 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	90.4	117.4	-	-	34
	105 to 500	178.5	160																				

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31						
	105 to 300			62	46		60				
25	30 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41		50				
	105 to 120				41		75				
	125 to 200			59	49.5						
	205 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						

Dimensions: Top/Right/Left Side Parallel Motor

Left side parallel motor type: $\operatorname{LEY}_{32}^{25} \mathrm{~L}$ Right side parallel motor type: $\operatorname{LEY}_{32}^{16}{ }_{40}^{25} R$

	$[\mathrm{mm}]$		
Size	\mathbf{S}_{1}	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{1 6}$	35.5	67	0.5
$\mathbf{2 5}$	47	91	$\mathbf{1}$
$\mathbf{3 2 , 4 0}$	61	117	1

* When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

With lock: $\operatorname{LEY} \begin{gathered}16 \\ 32 \\ 30 \\ 40 \\ \square \square\end{gathered}$

$\begin{array}{ll}16 & A \\ 25 \\ 32 \\ 40 & C\end{array}$

LEY Series

Incremental (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	Step motor	Servo motor	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V	Step motor	Servo motor V	Y
16	30 to 100	166.3	167	92	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M4 x 0.7	7	35	35.5	0.5	28	61.8	62.5	24
	105 to 300	186.3	187	112																		
25	30 to 100	195.4	191.6	115.5	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	42	63.4	59.6	26
	105 to 400	220.4	216.6	140.5																		
32	30 to 100	216.9	-	128	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6x 1	10	60	61	1	56.4	68.4	-	32
	105 to 500	246.9	-	158																		
40	30 to 100	238.9	-	128	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1	10	60	61	1	56.4	90.4	-	32
	105 to 500	268.9	-	158																		

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	30 to 35	15	17	23.5	23		M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	105 to 300		62	46		60				
25	30 to 35	20	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100					50				
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	105 to 120		36	43						
	125 to 200		53	51.5		80				
	205 to 500		70	60						

Dimensions: In-line Motor
With motor cover: $\operatorname{LEY} Y_{32}^{16} \mathrm{D} \stackrel{\mathrm{A}}{\mathrm{B}}-\square \mathrm{C}$

Size	Stroke range	A	T2	X2	L	CV
16	Up to 100	169	7.5	66.5	35	43
	105 to 300	189				
25	Up to 100	198.5	7.5	68.5	46	54.5
	105 to 400	223.5				
32	Up to 100	220	7.5	73.5	60	68.5
	105 to 500	250				
40	Up to 100	242	7.5	95.5	60	68.5
	105 to 500	272				

With lock: $\operatorname{LEY}_{32}{ }_{30}^{25} \mathrm{D} \square \stackrel{\mathrm{A}}{\mathrm{C}}-\square \mathrm{B}$

Size	Stroke range	Step motor				Servo motor
		Servo motor				
$\mathbf{1 6}$	Up to 100	207.8	208.5	103.3	104	
	105 to 300	227.8	228.5			
$\mathbf{2} \mathbf{2 5}$	Up to 100	235.9	232.1	103.9	100.1	
	105 to 400	260.9	257.1			
$\mathbf{3} \mathbf{3 2}$	Up to 100	259.9	-	111.4	-	
	105 to 500	289.9	-			
$\mathbf{4 0}$	Up to 100	281.9	-	133.4	-	
	105 to 500	311.9	-			

Size	Stroke range	A	T2	X2	L	CV
16	Up to 100	210.5	7.5	108	35	43
	105 to 300	230.5				
25	Up to 100	239	7.5	109	46	54.4
	105 to 400	264				
32	Up to 100	263	7.5	116.5	60	68.5
	105 to 500	293				
40	Up to 100	285	7.5	138.5	60	68.5
	105 to 500	315				

LEY Series

Dimensions

[mm]

Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	\mathbf{D}	$\mathbf{H}_{\mathbf{1}}$	\mathbf{K}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{1 6}$	13	12	16	5	14	24.5	$\mathbf{1 4}$	$\mathrm{M} 8 \times 1.25$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2 , 4 0}$	22	20.5	25	8	22	42.0	23.5	$\mathrm{M} 14 \times 1.5$

[^1]* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Special cap bolt

[^2]* The A measurement is when the unit is in the original position. At this position, 2 mm at the end.
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Rod flange: $\mathrm{LEY32} \square \square \mathbf{B}-\square \square \square \mathrm{F}$

Double clevis: LEY32 $\quad \square \square \mathrm{B}-\square \square \square \mathrm{D}$
$40 \quad$ C

Head flange: LEY16 $\square \square \mathbf{B}-\square \square \square \mathbf{G}$

A
Head flange: $\mathbf{L E Y} 25 \square \square \mathbf{B}-\square \square \square \mathbf{G}$

Rod/Head Flange
[mm]

Size	FD	FT	FV	FX	FZ	LL	\mathbf{M}
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.

Double Clevis

Size	Stroke range [mm]	A		CL	CB	CD	CT
16	30 to 100	128		119	20	8	5
25	30 to 100	160.5		150.5	-	10	5
	105 to 200	185.5		175.5			
32	30 to 100	180.5		170.5	-	10	6
40	105 to 200	210.5		200.5			
Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
16	30 to 100	12	18	8	16	10.5	9
25	30 to 100	14	20	18	36	14.5	10
25	105 to 200	14	20	18	36	14.5	10
32	30 to 100	14	22	18	36	185	10
40	105 to 200	14	22	18	36	18.5	10

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

How to Order

Accuracy

$\mathbf{N i l}$	Basic type
\mathbf{H}	High-precision type

2 Size
25
32
63

3 3
Motor mounting position
NiI
Top side parallel
R
Right side parallel
L
Left side parallel
D
In-line

(4) Motor type

Symbol	Type	Output [W]	$\begin{gathered} 2 \\ \text { Size } \end{gathered}$	(13 Driver type	Compatible drivers*3
S2*1	AC servo motor (Incremental encoder)	100	25	A1/A2	LECSA \square-S1
S3		200	32	A1/A2	LECSAD-S3
S4		400	63	A2	LECSA2-S4
T6*2	AC servo motor (Absolute encoder)			B2	LECSB2-T5
		100	25	C2	LECSC2-T5
				S2	LECSS2-T5
T7		200	32	B2	LECSB2-T7
				C2	LECSC2-T7
				S2	LECSS2-T7
T8		400	63	B2	LECSB2-T8
				C2	LECSC2-T8
				S2	LECSS2-T8

*1 For motor type S2, the compatible driver part number suffix is S1.
*2 For motor type T6, the compatible driver part number is LECS $\square 2-T 5$.
*3 For details on the driver, refer to page 1109.

Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight/
Water-jet-proof)/With vent hole tap		

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil, etc. Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 577.

8
Motor option

Nil	Without option
B	With lock*1

*1 When "With lock" is selected for the top/right/left side parallel motor types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less.
Check for interference with workpieces before selecting a model.

(5) Lead [mm]

Symbol	LEY25	LEY32*1	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86^{* 2}$

*1 The values shown in () are the leads for the size 32 top/right/left side parallel motor types. (Equivalent leads which include the pulley ratio [1.25:1])
*2 Only available for top/right/left side parallel motor types (Equivalent leads which include the pulley ratio [4:7])

6
Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{8 0 0}$	800

* For details, refer to the applicable stroke table below.

9 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Applicable Stroke Table

 Model Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	600	700	800	Manufacturable stroke range
LEY25	\bigcirc	-	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	-	-	20 to 500
LEY63	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bullet	-	\bigcirc	\bigcirc	50 to 800

[^3]

Motor mounting position: Parallel

Motor mounting position: In-line

10 Mounting*1

Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/ Body bottom tapped*2	\bigcirc	-
L	Foot bracket	\bigcirc	-
F	Rod flange*2	* ${ }^{*}$	\bigcirc
G	Head flange*2	* ${ }^{*}$	-
D	Double clevis*2	\bigcirc	

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range.
. LEY25: 200 mm or less • LEY32: 100 mm or less LEY63: 400 mm or less
*3 For the mounting of the double clevis type, use the actuator within the following stroke range.
LEY25: 200 mm or less • LEY32: 200 mm or less LEY63: 300 mm or less
*4 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the LEY32/63.

11 Cable type ${ }^{* 1 * 2}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

*1 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option " B : With lock" is selected.)
*2 Standard cable entry direction is

- Parallel: (A) Axis side
- In-line: (B) Counter axis side (Refer to page 1123 for details.)

12 Cable length*1 [m]

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*1 The length of the motor, encoder, and lock cables are the same.

13 Driver type* ${ }^{* 1}$

	Compatible drivers	Power supply voltage [V]
Nil	Without driver	-
A1	LECSA1-S \square	100 to 120
A2	LECSA2-S \square	200 to 230
B2	LECSB2-T \square	200 to 240
C2	LECSC2-T \square	200 to 230
S2	LECSS2-T \square	200 to 240

*1 When a driver type is selected, a cable is included. Select the cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil: Without cable and driver
14 I/O cable length [m]* ${ }^{* 1}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to page 1124 if an I/O cable is required.
(Options are shown on page 1124.)

Compatible Drivers

Driver type	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	SSCNETMIH type
Series	LECSA	LECSB-T	LECSC-T	LECSS-T
Number of point tables	Up to 7	Up to 255	Up to 255 (2 stations occupied)	
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III/H
Control encoder	Incremental 17-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage [V]	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$	200 to 240 VAC (50/60 Hz)	200 to 230 VAC (50/60 Hz)	200 to 240 VAC (50/60 Hz)
Reference page	1109			

Specifications: LECSA

Model				LEY25S2 (Parallel)/LEY25DS2 (In-line)			LEY32S3 (Parallel)			LEY32DS3 (In-line)		
	Work load [kg]		Horizonta**	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N$]^{* 2}$ (Set value: 15 to 30\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion [mm]*5		Basic type	0.1 or less								
			High-rrecision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s ${ }^{\text {2 }}{ }^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYC)/Ball screw (LEYCD)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Enclosure			IP40								
	Regeneration option			May be required depending on speed and work load (Refer to pages 435 and 436.)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$)								
	Power [W]*7			Max. power 445			Max. power 724			Max. power 724		
	Type*8			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power [W] at $20^{\circ} \mathrm{C}$			6.3			7.9			7.9		
	Rated voltage [V]			24 VDC ${ }_{-10 \%}^{0}$								

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph" on page 437.
When the control equivalent to the pushing operation of the JXC51/61 series controller is performed, select the LECSS-T or LECSB2-T driver. The point table no. input method is used for the LECSB2-T. When selecting the LECSS2-T, combine it with a Simple Motion module (manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
*3 The allowable speed changes according to the stroke. Set the number of rotations according to speed.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*8 Only when motor option "With lock" is selected

Weight

Product Weight [kg]																					
	Series	LEY25S2 (Motor mounting position: Parallel)									LEY32S3 (Motor mounting position: Parallel)										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Motor type	Incremental encoder	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
Series		LEY25DS2 (Motor mounting position: In-line)									LEY32DS3 (Motor mounting position: In-line)										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Motor type	Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28

Additional Weight

Additional Weight		[kg]	
Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Specifications: LECS \square-T

	Model			LEY25T6 (Parallel)/LEY25DT6 (In-line)			LEY32T7 (Parallel)			LEY32DT7 (In-line)		
Work load [kg]			Horizontal*	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
Force [N$]^{* 2}$ (Set value: 12 to 24\%)				65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
边	Max.*3		Up to 300	900	450	225	1200	600	300	1000	500	250
	speed	Stroke range	305 to 400	600	300	150	1200	600	300	1000	500	
	[mm / s]		405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [$\mathrm{mm} / \mathrm{s}]^{* 4}$			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]$			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High-precisiontype		± 0.01		± 0.01					
	Lost motion*5 [mm]		Basic type	0.1 or less								
			High.precision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20								
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEYCD)			Ball screw + Belt [1.25:1] ${ }^{\text {50/20 }}$ Ball screw					
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating humidity range [\%RH]			5 to 40			5 to 40					
				90 or les	(No conde	nsation)	90 or less (No condensation)					
	Enclosure			IP40								
	Regeneration option			May be required depending on speed and work load (Refer to pages 435 and 436.)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder*9			Motor type T6, T7: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB2-TD, LECSS2-TD) Motor type T6, T7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC-TD)								
	Power [W]*7			Max. power 445			Max. power 724			Max. power 724		
Type*8				Non-magnetizing lock								
				131	255	485	157	308	588	197	385	736
				6.3			7.9			7.9		
	Rated voltage [V]			24 VDC ${ }_{-10 \%}$								

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. Set it while referencing the "Force Conversion Graph (Guide)" on page 438.
The drivers applicable to the pushing operation are "LECSB-T" and "LECSS-T."
The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings. To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2 ${ }^{\text {TM }}$: LEC-MRC2 \square). Please download this dedicated file from the SMC website: https://www.smcworld.com When selecting the LECSS2-T, combine it with upper level equipment (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
** For customer-provided PLC and motion controller setting and usage instructions, confirm with the retailer or manufacturer.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*8 Only when motor option "With lock" is selected
*9 The resolution will change depending on the driver type.

Weight

Product Weight																				
Series	LEY25T6 (Motor mounting position: Parallel)									LEY32T7 (Motor mounting position: Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흔 일 Absolute encoder	1.4	1.5	1.6	1.9	2.0	2.2	2.4	2.6	2.7	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2
Series	LEY25DT6 (Motor mounting position: In-line)									LEY32DT7 (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흘 일 Absolute encoder	1.4	1.5	1.6	1.9	2.1	2.2	2.4	2.6	2.8	2.4	2.5	2.8	3.2	3.5	3.8	4.1	4.4	4.6	4.9	5.2

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Absolute encoder [T6/T7]	0.3	0.4
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Specifications

Model				LEY63S4/T8 (Parallel)				LEY63DS4/T8 (In-line)		
	Work load [kg]		Horizontal*1	40	70	80	200	40	70	80
			Vertical*11	19	38	72	115	19	38	72
	Force [N]/Set value*2: 15 to 50\%*3, 4			156 to 521	304 to 1012	573 to 1910	1003 to 3343	156 to 521	304 to 1012	573 to 1910
	Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250	70	1000	500	250
			505 to 600	800	400	200		800	400	200
			605 to 700	600	300	150		600	300	150
			705 to 800	500	250	125		500	250	125
	Pushing speed [mm/s]*6			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			3000	5000		
	Positioning repeatability [mm]		Basic type	± 0.02						
			High-precision type	± 0.01						
	Lost motion [mm]*7		Basic type	0.1 or less						
			High-precision type	0.05 or less						
	Screw lead [mm] (including pulley ratio)			20	10	5	5 (2.86)	20	10	5
	Impact/Vibration resistance [m/s ${ }^{2}$]*8			50/20						
	Actuation type			Ball screw + Belt \quad Ball sceew + Beli [Pulley alio 477]\|				Ball screw		
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Enclosure			IP40						
	Regeneration option			May be required depending on speed and work load (Refer to pages 435 and 436.)						
	Motor output/Size			$400 \mathrm{~W} / \square 60$						
	Motor type			AC servo motor (200 VAC)						
	Encoder*12			Motor type S4: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type T8: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB2-T8, LECSS2-T8) Motor type T8: Absolute 18-bit encoder (Resolution: 262144 p/rev) (For LECSC2-T8)						
	Power [W]*9			Max. power 1275						
	Type*10			Non-magnetizing lock						
	Holding force [N]			313	607	1146	2006	313	607	1146
	Power [W] at $20^{\circ} \mathrm{C}$			7.9						
	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$						

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph" on pages 437 and 438.
The drivers applicable to the pushing operation are "LECSB-T" and "LECSS-T."
The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.
To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2TM: LEC-MRC2 \square).
Please download this dedicated file from the SMC website: https:// www.smcworld.com
When selecting the LECSS2-T, combine it with upper level equipment (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
** For customer-provided PLC and motion controller setting and us-
age instructions, confirm with the retailer or manufacturer.
*4 For the motor type T8, the set value is from 12 to 40%.
*5 The allowable speed changes according to the stroke. Set the number
of rotations according to speed.
6 The allowable collision speed for collision with the workpiece with the torque control mode
*7 A reference value for correcting errors in reciprocal operation
*8 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*9 Indicates the max. power during operation (including the driver)
When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*10 Only when motor option "With lock" is selected
*11 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
*12 For motor type T8, the resolution will change depending on the driver type.

Weight

	duct Weight													
	Series			Y63										
	Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
	Incremental encoder	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.4	14.5
	Absolute encoder (Motor type T8)	4.9	5.4	6.0	6.6	7.8	8.3	8.9	9.4	10.0	10.5	12.2	13.	14
	Series	LEY63DS4/T8 (Motor mounting position: In-line)												
Stroke [mm]		50	100	150	200	250	300	350	400	450	500	600	700	800
	Incremental encoder	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7
	Absolute encoder (Motor type T8)	5.1	5.6	6.2	6.7	7.9	8.4	9.0	9.6	10.2	10.7	12.4	13.5	14.7

Additional Weight		
	Size	63
Lock	Incremental enc	0.4
	Absolute encoder (Motor type T8)	0.4
Rod end male thread	Male thread	0.12
	Nut	0.0
Foot bracket (2 sets including mounting bolt)		0.2
Rod flange (including mounting bolt)		0.5
Double clevis (including pin, retaining ring, and mounting bolt)		0.

Construction

Top side parallel motor type: LEY32

63

LEY Series

Dimensions: Top/Right/Left Side Parallel Motor

*1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$

(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions: Top/Right/Left Side Parallel Motor

[mm]																			
Size	Stroke range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O_{1}	R	S	T	U	Y	V
25	30 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$	24	17	14.5	34	M5 x 0.8	8	46	92	1	26.5	40
	105 to 400	155.5	141																
32	30 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$	31	22	18.5	40	M6 x 1.0	10	60	118	1	34	60
	105 to 500	178.5	160																
63	50 to 200	192.6	155.2	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	80	146	4	32.2	60
	205 to 500	227.6	190.2																
	505 to 800	262.6	225.2																

Size	Stroke range [mm]	Incremental encoder [S2/S3/S4]						Absolute encoder [T6/T7/T8]						F	G
		Without lock			With lock			Without lock			With lock				
		W	X	Z	W	X	Z	W	X	Z	W	X	Z		
25	30 to 100	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123	156	15.8	2	4
	105 to 400														
32	30 to 100	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	113.4	153.4	17.1	2	4
	105 to 500														
63	50 to 200	110.2	150.2	$\begin{gathered} 15.6 \\ (16.6)^{* 1} \end{gathered}$	138.8	178.8	$\begin{gathered} 15.6 \\ (16.6)^{* 1} \end{gathered}$	98.3	138.3	$\begin{aligned} & 15.6 \\ & (16.6)^{* 1} \end{aligned}$	135.1	175.1	$\begin{aligned} & 15.6 \\ & (16.6)^{* 1} \end{aligned}$	4	8
	205 to 500														
	505 to 800														

*1 The values in () are the dimensions when L is selected for screw lead.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	105 to 120						75				
	125 to 200			59	49.5						
	205 to 400			76	58						
32	30 to 35	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120						80				
	125 to 200			53	51.5						
	205 to 500			70	60						
63	50 to 70	38	-	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120			45	60.5						
	125 to 200			58	67						
	205 to 500			86	81		100				
	505 to 800						135				

Left side parallel motor type: LEY ${ }_{32}^{25}$
63

Right side parallel motor type: LEY 32R
63

Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{2 5}$	47	91	$\mathbf{1}$
$\mathbf{3 2}$	61	117	$\mathbf{1}$
$\mathbf{6 3}$	84	142	4

[^4]
LEY Series

Dimensions: In-line Motor

Section XX details

*1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63D $\square \square-\square \mathbf{P}$ (View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

Dimensions: In-line Motor

[mm]																		
Size	Stroke range [mm]	C	D	EH	EV	H	J	K	L	M	0	R	S	T	U	B	V	
25	30 to 100	13	20	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	136.5	40	
	105 to 400															161.5		
32	30 to 100	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	61	1	156	60	
	105 to 500															186		
63	50 to 200	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	78	83	5	190.7	60	
	205 to 500															225.7		
	505 to 800															260.7		
Size	Stroke range [mm]	Incremental encoder [S2/S3/S4]							Absolute encoder [T6/T7/T8]							F	G	
		Without lock				With lock			Without lock				With lock					
		A			Z	A	W	Z			W	Z	A	W	Z			
25	30 to 100	238	87		14.6	274.9	123.9	16.3			82.4	4.6	274	123	16.3	2	4	
	105 to 400	263			299.9					299								
32	30 to 100	262.7	88.2			17.1	291.3	116.8	17.1			76.6	7.1	287.9	113.4	17.1	2	4
	105 to 500	292.7			321.3						317.9							
63	50 to 200	338.3	110.2		8.1	366.9	138.8	8.1			98.3	8.1	363.2	135.1	8.1	4	8	
	205 to 500	373.3			401.9					398.2								
	505 to 800	408.3			436.9					433.2								

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 35	20	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100									
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	30 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			43						
	105 to 120					80				
	125 to 200		53	51.5						
	205 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

LEY Series

Dimensions

* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.
* Refer to the "Handling" precautions on pages 574 to 577 when mounting end brackets such as knuckle joint or workpieces.

$[\mathrm{lmm}]$								
Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	\mathbf{D}	$\mathbf{H}_{\mathbf{1}}$	\mathbf{K}	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	25	8	22	42.0	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{6 3}$	27	26	40	11	36	76.4	39	M18

* The L_{1} measurement is when the unit is in the Z -phase first detecting position. At this position, 2 mm at the end (size 25, 32) and 4 mm at the end (size 63).

Dimensions

Head flange: LEY25 $\square \square \mathbf{B} \mathbf{B}-\square \square \square \mathbf{G}$

Rod/Head Flange
[mm]

Size	FD	FT	FV	FX	FZ	LL	\mathbf{M}
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40
$\mathbf{6 3}$	9	9	80	92	108	28.4	60

Material: Carbon steel (Nickel plating)

* The LL measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).
* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.

Included parts

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring

Double Clevis

Size	Stroke range [mm]	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	30 to 100	160.5	150.5	10	5	14	20	18	36	14.5	10
	105 to 200	185.5	175.5								
32	30 to 100	180.5	170.5	10	6	14	22	18	36	18.5	10
	105 to 200	210.5	200.5								
63	50 to 200	236.6	222.6	14	8	22	30	22	44	37.4	14
	205 to 500	271.6	257.6	-	-						
	505 to 800	306.6	292.6	-	-						

[^5]
Electric Actuator Rod Type

Nil	Top side parallel
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel
\mathbf{D}	In-line

3 Motor type
Symbol Type Output [W] Actuator size Compatible drivers T9 AC servo motor (Absolute encoder) 750 100 LECSB2-T9 LECSC2-T9 LECSS2-T9 LECSN2-T9(- $\square)$

(4) Lead [mm]

Symbol	LEY100
B	10
D	$3.33^{* 1}$
L	$2^{* 2}$

*1 Screw lead 10 mm , reducer ratio [1/3]
*2 Screw lead 10 mm , reducer ratio [1/5]

* For details, refer to the applicable stroke table below.

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

10 Cable length [m]*1

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*1 The length of the encoder, motor, and lock cables are the same.
*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 Do not mount using the "flange" or "ends tapped" options for the horizontal type with one end secured.
*3 Double clevis type: Use within the stroke limit of 400 or less and the thrust limit of 6000 or less.

11 Driver type*1		
-	Compatible drivers	Power supply voliage []]
Nil	Without driver	
B2	LECSB2-T9/Pulse input (Absolute encoder)	200 to 240
C2	LECSC2-T9/CC-Link (Absolute encoder)	200 to 230
S2	LECSS2-T9/SSCNET/H (Absolute encoder)	200 to 240

(9) Cable type ${ }^{* 1 * 2}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible)

*1 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option "B: With lock" is selected.)
*2 Standard connector orientation of cable
-Top/parallel: "shaft side (A)"
-In-line: "opposite side (B)"
(Refer to page 1123 for details.)

12 I/O cable length [m]*1

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to page 1124 if an I/O cable is required.
*1 When a driver type is selected, a cable is included.
Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil: Without cable and driver

Applicable Stroke Table

Size	Stroke [mm]										
	100	200	300	400	500	600	700	800	900	1000	Manviacturale stroke range
100	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	100 to 1000

* Please contact SMC for non-standard strokes as they are produced as special orders.

Specifications

Model				LEY100 \square L	LEY100 \square D	LEY100 \square B
Stroke [mm]*12				100, 200, 300, 400, 500, 600, 700, 800, 900, 1000		
	Work load [kg]		Horizontal*1	1200	1200	240
			Vertical	200	185	80
	Rated force [N]/Set value*2: $25 \% * 3$			5500	3300	1100
	Max. force [N]/Set value*2: $55 \% * 3 * 4$			12000	7200	2600
	Max. speed [mm/s]*5	Stroke range	Up to 500	100	167	500
			600	74	123	370
			700	57	95	285
$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			800	45	75	225
$\stackrel{\square}{6}$			900	36	60	180
O			1000	30	50	150
-	Pushing speed [mm/s]**			20 or less		
क	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]^{* 7}$			2000	3000	
¢	Positioning repeatability [mm]			0.02		
$\stackrel{\square}{3}$	Lost motion [mm]*8			0.10		
-	Screw lead [mm]			10		
	Reduction ratio			1/5	1/3	-
	Lead [mm]			2	3.3	10
	Impact/Vibration resistance [m/s ${ }^{2}{ }^{* 9}$			Motor mounting position: In-line 50/20, Motor mounting position: Parallel 50/15		
	Actuation type			Motor mounting position: In-line/Ball screw, Motor mounting position: Parallel/Ball screw + Belt		
	Guide type			Sliding bushing (Piston rod)		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Enclosure			IP40		
	Motor output [W]/Size [mm]			750/口80		
	Motor type			AC servo motor (200 VAC)		
	Encoder			Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC-T \square only)		
	Power [W]*10			Max. power 1100		
	Type*11			Non-magnetizing lock		
	Holding force [N]			5700	3400	1200
	Power [W] at $20^{\circ} \mathrm{C}$			10		
	Rated voltage [V]			24 VDC ${ }_{-10 \%}^{0}$		

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph" on page 438 and the "Load-Acceleration/Deceleration Graph" on page 439.
The drivers applicable to the pushing operation are "LECSB-T" and "LECSS-T." The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings. To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2 ${ }^{\text {TM }}$: LEC-MRC2 \square). Please download this dedicated file from the SMC website: https://www.smcworld.com
When selecting the LECSS2-T, combine it with upper level equipment (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
** For customer-provided PLC and motion controller setting and usage instructions, confirm with the retailer or manufacturer.
*4 The max. force changes according to the stroke. Check the "ForceStroke Graph" on page 439
For "double clevis type": Maximum thrust limited to 6000 or less
*5 The allowable speed changes according to the stroke. Set the number of rotations according to speed.
*6 The allowable collision speed for collision with the workpiece with the torque control mode
*7 The max. acceleration/deceleration changes according to the work oad. Check the "Load-Acceleration/Deceleration Graph" on page 439.
*8 A reference value for correcting errors in reciprocal operation
*9 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*10 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver
*11 Only when motor option "With lock" is selected
*12 For "double clevis type": Stroke limited to 400 or less.

Weight

Product Weight

Series			LEY100DT8 (Motor mounting position: In-line)									
Stroke [mm]			100	200	300	400	500	600	700	800	900	1000
유자	LEY100DT9B	With motor, Without reducer	12.7	14.4	16.0	17.7	19.3	21.0	22.6	24.2	25.9	27.5
9	LEY100DT9(D/L)	With motor, With reducer	15.1	16.8	18.4	20.1	21.7	23.4	25.0	26.6	28.3	29.9

[kg]												
Series			LEY100T8 (Motor mounting position: Parallel)									
	Stroke [mm		100	200	300	400	500	600	700	800	900	1000
윶	LEY100T9B	With motor, Without reducer	14.5	16.1	17.8	19.4	21.1	22.7	24.4	26.0	27.7	29.3
$\stackrel{\text { d }}{ }$	LEY100T9(D/L)	With motor, With reducer	16.9	18.5	20.2	21.8	23.5	25.1	26.8	28.4	30.1	31.7

Additional Weight			
Size		With lock	
100			
Motor option	Wi.0		
Rod end thread	Male thread	0.1	
	Nut	0.1	
	Foot bracket (in-line)	0.8	
	Foot bracket	1.4	
	Flange	1.1	
	Double clevis	1.3	

LEY Series

Construction
In-line motor type: LEY100

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Screw shaft	Alloy steel	
3	Ball screw nut	Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Alloy steel	Hard chrome plating
6	Rod cover	Aluminum alloy	Anodized
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket (Male thread)	Alloy steel	Nickel plating
10	Bushing	Bearing alloy	
11	Bearing	-	
12	Magnet	-	
13	Wear ring holder	Aluminum alloy	
14	Wear ring	Synthetic resin	
15	Lock nut	Alloy steel	
16	Motor block	Aluminum alloy	Anodized

No.	Description	Material	Note
$\mathbf{1 7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{1 8}$	Bumper	Urethane	
$\mathbf{1 9}$	Coupling	-	
$\mathbf{2 0}$	Scraper	NBR	
$\mathbf{2 1}$	Sintered element	Stainless steel	
22	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 3}$	Nut	Alloy steel	Zinc chromating
$\mathbf{2 4}$	Reducer	-	
25	Motor	-	
26	Socket (Female thread)	Alloy steel	Nickel plating
27	Return box	Aluminum die-cast	Coating
28	Return plate	Aluminum alloy	Anodized
29	Screw shaft pulley	Alloy steel	
30	Motor pulley	Alloy steel	
31	Belt	-	
32	Motor adapter	Aluminum alloy	Anodized

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Dimensions: In-line Motor

LEY100D \square

Dimensions with * indicate the dimensions when a male rod end is selected.

Rod end female thread: LEY100DT9 $\square-\square \square \square$

With reducer: LEY100DT9(D/L)- $\square \square \square$

Size	Stroke range [mm]	LEY100DT9B						LEY100DT9(D/L) [With reducer]					
		Without lock			With lock			Without lock			With lock		
		A	Y	W	A	Y	W	A	Y	W	A	Y	W
100	100 to 1000	472.7	49	112	513	49	152.3	580.5	61.3	207.5	620.8	61.3	247.8

Rod flange: LEY100DT9 $\square-\square \square \square$

Foot bracket: LEY100DT9 $\square-\square \square \square$

Included parts

- Flange
- Body mounting bolt

Included parts Mounting bracket (2 pcs.) Body mounting bolt

[^6]*2 The orientation of the square-width width across flats at the end of the rod differs for each product.

LEY Series

AC Servo Motor size 100

Dimensions: Top/Right/Left Side Parallel Motor

Rod end female thread: LEY100T9 $\square-\square \square$

With reducer: LEY100T9(D/L)- $\square \square \square \square$

Motor mounting position
Right side parallel

Dimensions: Top/Right/Left Side Parallel Motor

Double clevis: LEY100T9 $\square-\square \square \square$

Rod flange: LEY100T9 $\square-\square \square \square$ F

Foot bracket: LEY100T9 $\square-\square \square \square \mathbf{H}$

ROO

How to Order

1) Accuracy

Nil	Basic type
H	High-precision type

2) Size

| $\mathbf{2 5}$ |
| :---: | :---: | :---: |
| $\mathbf{3 2}$ |
| $\mathbf{6 3}$ |\quad| 3 | Motor mounting position |
| :---: | :---: |
| Nil | Top side parallel |
| \mathbf{R} | Right side parallel |
| L | Left side parallel |
| \mathbf{D} | In-line |

*1 For motor type V6, the compatible driver part number suffix is V 5 .
5 Lead [mm]

Symbol	LEY25	LEY32*1	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86^{* 2}$

*1 The values shown in () are the leads for the top/ right/left side parallel motor types. (Equivalent leads which include the pulley ratio [1.25:1])
*2 Only available for top/right/left side parallel motor types (Equivalent leads which include the pulley ratio [4:7])

6 Stroke [mm]	
$\mathbf{3 0}$	30
to	to
800	800

* For details, refer to the applicable stroke table below.
7 7 Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
\mathbf{P}	-	IP65 equivalent (Dust-tight/ Water-jet-proof)/With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil, etc. Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 577.

8 Motor option

Nil	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top/right/ left side parallel motor types, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less.
Check for interference with workpieces before selecting a model.

Applicable Stroke Table

[^7]

10 Mounting*1

Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/ Body bottom tapped ${ }^{* 2}$	\bigcirc	\bigcirc
L	Foot bracket	-	-
F	Rod flange*2	*4	\bigcirc
G	Head flange*2	*5	-
D	Double clevis*3	\bigcirc	-

*1 The mounting bracket is shipped together with the product but does not come assembled
*2 For the horizontal cantilever mounting of the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range.
LEY25: 200 mm or less • LEY32: 100 mm or less • LEY63: 400 mm or less
*3 For the mounting of the double clevis type, use the actuator within the following stroke range.
LEY25: 200 mm or less • LEY32: 200 mm or less • LEY63: 300 mm or less
*4 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*5 The head flange type is not available for the LEY32/LEY63

11 Cable type*1

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

*1 A motor cable and encoder cable are included with the product.
The motor cable for lock option is included when the motor with lock option is selected.

12 Cable length [m]*1

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

13 Driver type

	Compatible drivers	Power supply voltage [V]
$\mathbf{N i l}$	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.

(14) I/O cable length $[\mathrm{m}]^{*}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected. Refer to page 1135 if an I/O cable is required. (Options are shown on page 1135.)

Compatible Drivers

Driver type	IA MECHATROLINK-II type	IRMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC (50/60 Hz)	
Reference page	1128	

Specifications

Model				LEY25V6 (Parallel)/LEY25DV6 (In-line)			LEY32V7 (Parallel)			LEY32DV7 (In-line)		
	Work load [kg]		Horizonta* ${ }^{* 1}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Force [N]*2 (Set value: 45 to 90\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s²]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High-precision type	± 0.01			± 0.01					
	Lost motion*5 [mm]		Basic type	0.1 or less			0.1 or less					
			High-precision type	0.05 or less			0.05 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEY $\square \mathrm{D}$)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Enclosure			IP40								
	Required conditions for the Horizontal regenerative resistor*7 [kg] Vertical			Not required			Not required					
				6 or more			4 or more					
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power [W]*8			Max. power 445			Max. power 724			Max. power 724		
$\stackrel{7}{4}$	Type*9			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power [W] at $20^{\circ} \mathrm{C}$			5.5			6			6		
	Rated voltage [V]			24 VDC ${ }_{0}^{+10 \%}$								

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. Set it while referencing the "Force Conversion Graph (Guide)" on page 445.
*3 The allowable speed changes according to the stroke.
$* 4$ The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 The work load conditions which require the regenerative resistor when operating at the max. speed (Duty ratio: 100\%). Order the regenerative resistor separately. For details, refer to the "Required Conditions for the Regenerative Resistor (Guide)" on pages 443 and 444.

* 8 Indicates the max. power during operation (including the driver)

When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*9 Only when motor option "With lock" is selected

Weight

Product Weight

Series	LEY25V6 (Motor mounting position: Parallel)									LEY32V7 (Motor mounting position: Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.6	1.7	1.9	2.1	2.2	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.0	4.3	4.6	4.9	5.2
Series	LEY25DV6 (Motor mounting position: In-line)									LEY32DV7 (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2

Additional Weight

Additional Weight			[kg
	Size	25	32
Lock		0.30	0.60
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)		0.08	0.14
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)			20
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Specifications

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 Set values for the driver
*3 The force setting range (set values for the driver) for the force control with the torque control mode. The force and duty ratio change according to the set value. Set it while referencing the "Force Conversion Graph (Guide)" on page 445.
*4 The allowable speed changes according to the stroke.
*5 The allowable collision speed for collision with the workpiece with the torque control mode
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 The work load conditions which require the regenerative resistor when operating at the max. speed (Duty ratio: 100\%)
*9 Indicates the max. power during operation (including the driver)
When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*10 Only when motor option "With lock" is selected

Weight

Product Weigh													[kg]
Series	LEY63V8 (Motor mounting position: Parallel)												
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight [kg]	4.8	5.3	6.0	6.5	7.7	8.2	8.8	9.3	9.9	10.4	12.1	13.3	14.4
Series			LEY	3DV	8 (M	or	,	ng	sit	:	ine)		
Stroke [mm]	50	100	150	200	250	300	350	400	450	500	600	700	800
Weight [kg]	5.0	5.5	6.1	6.6	7.8	8.3	9.0	9.5	10.1	10.6	12.3	13.4	14.6

Additional Weight		[kg]
	Size	63
Lock		0.6
Rod end male thread	Male thread	0.12
	Nut	0.04
Foot bracket (2 sets including mounting bolt)		0.26
Rod flange (including mounting bolt)		0.51
Double clevis (including pin, retaining ring, and mounting bolt)		0.58

LEY Series

AC Servo Motor

Construction

25

Top side parallel motor type: LEY 32

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 5}$	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	Synthetic resin	Stroke 101 mm or more
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
$\mathbf{2 0}$	Belt	-	
$\mathbf{4 9 3}$			

Replacement Parts (Top/Right/Left side parallel only)/Belt

No.	Size	Order no.	No.	Size	Lead	Order no.
20	25	LE-D-2-2	20	63	A/B/C	LE-D-2-5
	32	LE-D-2-4			L	LE-D-2-6

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$ GR-S-020 $(20 \mathrm{~g})$

Dimensions: Top/Right/Left Side Parallel Motor

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63 $\square \square \square-\square \mathbf{P}$

(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: $\varnothing 4$ or more, Connection thread: Rc1/8].

Size	Stroke range [mm]	A		B	C D	D EH	EV	H	J	K	L	M		O_{1}		R	S	T U	U	Y	V	
25	30 to 100	130.5		116	13	44	45.5	M8 x 1.25	24	17	14.5	34	M5 x 0.8			8	46	92	26.5		40	
25	105 to 400	155.5		41																		
32	30 to 100	148.5		30	13	25	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0			10	60	118	1	34	60	
	105 to 500	178.5		60																		
63	50 to 200	192.6		55.2	21	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25			16	80	146	32.2		60	
	205 to 500	227.6		90.2																		
	505 to 800	262.6		25.2																		
Size	Stroke range [mm]	Without lock			With lock			F G	Body Bottom Tapped												[mm]	
		W	X	Z	W	X	Z		Size	Stroke range [mm]		MA	MB	MC	MD	MH	ML	MO	MR	XA		
25	30 to 100	82.5	115.5	11	127.5	160.5	11	24				XB										
	105 to 400								25	30	35		20		24	32		50	M5 x 0.8			
32	30 to 100	80	120	14	120	160	14	24		40 to	100	46		42	41	29	6.5			4	5	
	105 to 500									105	120			42	41			75				
	50 to 200	98.5	138.5	$\left\|\begin{array}{c} 12.5 \\ (13.5)^{* 1} \end{array}\right\|$	138.5	178.5		48		125	200			59	49.5							
63	205 to 500						$(13.5)^{* 1}$			205	400			76	58							
	505 to 800								32	30	35	25	55	22	36	30	50	M6 x 1	8.5	5		
								1 L lead		40 to	100			36	43						6	
										105	120			36	43		80					
										125	200			53	51.5							
										205	500			70	60							
									63	50	70	38	52.2	24	50	44	65	M8 x 1.25	10	6	7	
										75 to	120			45	60.5							
										125	200			58	67							
										205	500			86	81		100					
										505	800											

LEY Series

Dimensions: Top/Right/Left Side Parallel Motor

25
Left side parallel motor type: LEY32 L
63

Right side parallel motor type: LEY $\mathbf{6 3}^{32 R}$

Size	\mathbf{S}_{1}	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{U}]$
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	1
$\mathbf{6 3}$	84	142	4

* When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden

Size	Stroke range [mm]	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V
25	30 to 100	136.5	13	20	44	45.5	M8x 1.25	24	17	14.5	34	M5 x 0.8	8	45	46.5	1.5	40
	105 to 400	161.5															
32	30 to 100	156	13	25	51	56.5	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	61	1	60
	105 to 500	186															
63	50 to 200	190.7	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	78	83	5	60
	205 to 500	225.7															
	505 to 800	260.7															

Size	Stroke range [mm]	Without lock			With lock			F	G
		A	W	Z	A	W	Z		
25	30 to 100	233.5	82.5	11.5	278.5	127.5	11.5	2	4
	105 to 400	258.5			303.5				
32	30 to 100	254.5	80	14	294.5	120	14	2	4
	105 to 500	284.5			324.5				
63	50 to 200	326.6	98.5	5	366.6	138.5	5	4	8
	205 to 500	361.6			401.6				
	505 to 800	396.6			436.6				

Body	Bottom	Tap	ped							[mm]
Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	30 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100									
	105 to 120		36	43		80				
	125 to 200		53	51.5						
	205 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800					135				

IP65 equivalent (Dust-tight/Water-jet-proof): LEY63D $\square \square-\square \mathbf{P}$

(View ZZ)

*1 When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water. The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8].

LEY Series

AC Servo Motor

Dimensions

End male thread:
 25

* Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.
Refer to the "Handling" precautions on pages 574 to 577 when mounting end brackets such as knuckle joint or workpieces.

Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{D}	\mathbf{H}_{1}	\mathbf{K}	$\mathbf{L}_{1}{ }^{* 1}$	$\mathbf{L} 2$	$\mathbf{M M}$
$\mathbf{2 5}$	22	20.5	20	8	17	38	23.5	M14 $\times 1.5$
$\mathbf{3 2}$	22	20.5	25	8	22	42.0	23.5	M14 $\times 1.5$
$\mathbf{6 3}$	27	26	40	11	36	76.4	39	M18

*1 The L_{1} measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25, 32) and 4 mm at the end (size 63).

,

Material: Carbon steel (Chromating)

* The A measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).
* When the motor mounting is the right or left side parallel type, the head side foot bracket should be mounted outward.

Dimensions

Double Clevis

Size	Stroke range [mm]	A	CL	CD	CT	CU	CW	CX	CZ	L	RR
25	30 to 100	160.5	150.5	10	5	14	20	18	36	14.5	10
	105 to 200	185.5	175.5								
32	30 to 100	180.5	170.5	10	6	14	22	18	36	18.5	10
	105 to 200	210.5	200.5								
63	50 to 200	236.6	222.6	14	8	22	30	22	44	37.4	14
	205 to 500	271.6	257.6	-	-						
	505 to 800	306.6	292.6	-	-						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

LEY Series

Accessory Mounting Brackets 1

Accessory Brackets/Support Brackets

Double Knuckle Joint
Y-G02

完
Y-G05
Y-G10

Material: Cast iron

Part no.	Applicable size	A	A1	E_{1}	L1	MM	R1
Y-G02	16	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3
Y-G04	25, 32, 40	42	16	ø22	30	M14 $\times 1.5$	12
Y-G05	63	56	20	ø28	40	M18 $\times 1.5$	16
Part no.	Applicable size	\mathbf{U}_{1}	NDH10	NX	NZ	L	icable part no.
Y-G02	16	11.5	$8{ }_{0}^{+0.058}$	$8{ }_{+0.2}^{+0.4}$	16	21	G02
Y-G04	25, 32, 40	14	$10^{+0.058}$	$18{ }_{+0.3}^{+0.5}$	36	41.6	G04
Y-G05	63	20	$14{ }_{0}^{+0.070}$	$22+{ }_{+0.3}^{+0.5}$	44	50.6	G05

Rod End Nut

Material: Carbon steel
[mm]

Part no.	Applicable size	Dd9	L1	L2	d	m	t	Retaining ring
IY-G02	16	$8{ }_{-0.0076}^{-0.040}$	21	16.2	7.6	1.5	0.9	Type C reataing ring 8
IY-G04	25, 32, 40	$10_{-0.076}^{-0.000}$	41.6	36.2	9.6	1.55	1.15	Type C retaining ing 10
IY-G05	63	$14_{-0.093}^{-0.050}$	50.6	44.2	13.4	2.05	1.15	Type C reatining ing 14

Mounting Bracket Part Nos.

Mounting bracket	Order qty.	Aplicable size					Contents
Foot bracket	$2^{* 1}$	LEY-L016	LEY-L025	LEY-L032	LEY-L063	LEY-L100	Foot bracket x 2 Mounting bolt x 4
Flange	1	LEY-F016	LEY-F025	LEY-F032	LEY-F063	LEY-F100	Flange x 1 Mounting bolt x 4
Double clevis	1	LEY-D016	LEY-D025	LEY-D032	LEY-D063	D5080	Clevis x 1 Mounting bolt x 4 Clevis pin x 1 Type C retaining ring for axis x 2

[^8]| Part
 no. | Applicable
 size | \mathbf{A} | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{E}_{\mathbf{1}}$ | $\mathbf{L}_{\mathbf{1}}$ | $\mathbf{M M}$ | $\mathbf{R}_{\mathbf{1}}$ | $\mathbf{U}_{\mathbf{1}}$ | $\mathbf{N D}_{\mathbf{H 1 0}}$ | $\mathbf{N X}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I-G02 | $\mathbf{1 6}$ | 34 | 8.5 | $\square 16$ | 25 | $\mathrm{M} 8 \times 1.25$ | 10.3 | 11.5 | $8_{0}^{+0.058}$ | $8_{0}^{-0.2}$ |
| I-G04 | $\mathbf{2 5 , 3 2 , 4 0}$ | 42 | 14 | $\varnothing 22$ | 30 | $\mathrm{M} 14 \times 1.5$ | 12 | 14 | $10_{0}^{+0.058}$ | $18_{-0.0}^{-0.3}$ |
| I-G05 | $\mathbf{6 3}$ | 56 | 18 | $\varnothing 28$ | 40 | $\mathrm{M} 18 \times 1.5$ | 16 | 20 | $14_{0}^{+0.078}$ | $22_{-0.5}^{-0.3}$ |

Knuckle Pin

* Common with double clevis pin

Accessory Mounting Brackets LEY Series

Simple Joint Brackets

* The joint is not included for type A and type B mounting brackets. Therefore, it must be ordered separately. Use with a force of 7800 N or less.

Joint and Mounting Bracket (Type A/B)/Part No.

Allowable Eccentricity			
Applicable size	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Eccentricity tolerance	± 1		
Backlash	0.5		

<How to Order>
The joint is not included for type A and type B mounting brackets. Therefore, it must be ordered separately Example) EY-U025 YA-03

Type B Mounting Bracket

Material: Stainless steel
[mm]

Part no.	Applicable size	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{J}	\mathbf{M}	$\varnothing \mathbf{0}$	
YB-03	$\mathbf{2 5 , 3 2 , 4 0}$	12	7	25	9	34	11.5 depth 7.5	
Part no.	Applicable size	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{V}	\mathbf{W}	$\mathbf{R S}$	Weight $[\mathrm{g}]$	
YB-03	$\mathbf{2 5 , 3 2 , 4 0}$	6.5	10	18	50	9	80	

Joint and Mounting Bracket (Type A/B)/Part No.

Applicable size $25,32,40$		$\begin{gathered} \hline \text { Joint } \\ \text { part no. } \\ \hline \text { LEY-U025 } \\ \hline \end{gathered}$		Applicable mounting bracket part no.						
				Type A mounting bracket			Type B mounting bracket			
					YA-03		YB-03			
Joint										
Partno.	$\begin{gathered} \text { Applicable } \\ \text { size } \end{gathered}$	UA C	C	d_{1}	d_{2}	H	K			Weight [g]
Y-U025 2	25, 32, 40	171	11	16	8	M8×1.25	14			

LEY Series
 Accessory Mounting Brackets 2

Dimensions: Piston Rod Accessories

Floating joint: JA

Size	Part no.	M	A	B	C	øD	E	F	G	H	P	U	Load [kN]	Weight [g]	Rotating angle
100	JAH50-20-150	M20 x 1.5	101	28	31	59.5	11.5	24	16	32	18	2	18	1080	$\pm 0.5^{\circ}$

* Black color

Rod clevis: GKM (ISO 8140)

Size	Part no.	e	b	d	øf h11 (Shaft)	$\boldsymbol{\text { of ня }}$ (Hole)	\boldsymbol{e}_{1}	\mathbf{c} (Min.)	\mathbf{a} (Max.)
$\mathbf{1 0 0}$	GKM20-40	M20 x 1.5	$20_{+0.15}^{+0.5}$	80	20	20	105	40	40

* Supplied with clevis pin and clevis pin bracket

Rod end: KJ (ISO 8139)

$[\mathrm{lmm}]$									
Size	Part no.	\mathbf{d}_{3}	$\varnothing \mathbf{d}_{1}$ н9	\mathbf{h}	\mathbf{d}_{6} $($ Max. $)$	$\mathbf{b}_{1 \text { h12 }}$	ℓ $($ Min. $)$	α	ℓ_{3}
$\mathbf{1 0 0}$	KJ20D	M20 $\times 1.5$	20	77	50	25	33	4°	27

LEY Series
Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch: D-M9 \square (V), D-M9 $\square E(V)$, D-M9 $\square W(V)$, D-M9 $\square A(V)$

Size	Stroke range	Auto switch position				$\begin{array}{\|c\|} \text { Return to } \\ \text { origin distance } \\ \hline \end{array}$	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D	E	-
16	10 to 100	21.5	46.5	33.5	34.5	(2)	2.9
	105 to 300	41.5		53.5			
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32/40	20 to 100	30.5	65.5	42.5	53.5	(2)	4.9
	105 to 500	60.5		72.5			
63	50 to 200	37	86	49	74	(4)	9.8
	205 to 500	72		84			
	505 to 800	107		119			

* The values in the table to the left are to be used as a reference when mounting auto switches for stroke end detection. Adjust the auto switch after confirming the operating conditions in the actual setting.
An auto switch cannot be mounted on the same side as a motor.
For LEYG series models (with a guide), an auto switch cannot be mounted on the guide attachment side (rod side). Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approx. $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Size: 16, 25, 32, 40, 63

Tightening Torque for Auto Switch Mounting Screw [N.m]

Auto switch model	Tightening torque
D-M9 $\square(\mathbf{V})$	
D-M9 $\square \mathbf{E}(\mathbf{V})$ D-M9 $\square \mathbf{W}(\mathbf{V})$	0.05 to 0.15
D-M9 $\square \mathbf{A (V)}$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .

Size: 100

A switch spacer is required in order to mount an auto switch.
When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reinsert it if necessary. Next, insert the auto switch into the slot and slide it until it is positioned under the switch spacer. After confirming the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Switch Spacer Part No.

Switch spacer	BMY3-016

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
$\left.\begin{array}{l}\text { D-M9 } \square(V) \\ \text { D-M9 } \\ \mathbf{W W}\end{array}\right)$	0.10 to 0.15

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

Normally Closed Solid State Auto Switch Direct Mounting Type D-M9NE(V)/D-M9PE(V)/D-M9BE(V)

Grommet

- Output signal turns on when no magnetic force is detected.
- Can be used for the actuator adopted by the solid state auto switch D-M9 series (excluding special order products)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 $\square E$, D-M9 \square EV (With indicator light)						
Auto switch model	D-M9NE	D-M9NEV	D-M9PE	D-M9PEV	D-M9BE	D-M9BEV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED illuminates when turned ON.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$		
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)	
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$		
Conductor	Effective area $\left[\mathrm{mm}{ }^{2}\right]$	0.15		
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model		D-M9NE(V)	D-M9PE(V)	D-M9BE(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})^{* 1}$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})^{* 1}$	68	63	

*1 The 1 m and 5 m options are produced upon receipt of order.

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 $\square W$

D-M9 $\square W V$

Guide Rod Type

LEYG Series

Incremental (Step Motor 24 VDC)
 Incremental (Servo Motor 24 VDC)
 p. 545

Guide Rod Type
LEYG Series

Model Selection

LEYGロE Series $>p .533$

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	-
	Ball bushing bearing	Graphs (3), (4)	Graphs (7), 8)	Graphs (9), 10

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

Vertical Mounting, Ball Bushing Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check the "Speed-Work Load Graph" on page 509.

Moment Load Graph
Horizontal Mounting, Sliding Bearing

Horizontal Mounting, Ball Bushing Bearing

(9) $L=50 \mathbf{~ m m ~ M a x . ~ s p e e d ~}=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(8) $L=\mathbf{1 0 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(10) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathbf{M}$ (Sliding bearing)

\triangle Caution

Handling Precautions

* When used as a stopper, select a model with a stroke of 30 mm or less.
* LEYG \square L $\square E$ (ball bushing bearing) cannot be used as a stopper.
* Workpiece collision in series with guide rod cannot be permitted (Fig. a).
* The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig. b

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)
Speed-Work Load Graph (Guide)
For Battery-less Absolute (Step Motor 24 VDC)

Horizontal

LEYG16ㄴ․ $\square E$
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25 ${ }_{\text {M }} \square \mathrm{E}$
$\mathrm{Z} \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32M ${ }^{\text {M }} \square \mathrm{E}$
$\mathrm{Z} \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\text {M }} \square \mathrm{E}$
Z \backslash for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEYG16 ${ }_{\text {M }} \square \mathrm{E}$

LEYG25 ${ }_{\text {M }} \square \mathrm{E}$

LEYG32M ${ }^{\mathrm{M}} \square \mathrm{E}$

LEYG40 ${ }_{\text {M }} \square \mathrm{E}$

Force Conversion Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)
LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{3 0} \mathbf{C}$ or less	65 or less	100	No restriction
$\mathbf{4 0}^{\circ} \mathbf{C}$	40 or less	100	No restriction
	50	30	45 or less
	60	18	15 or less
	65	15	10 or less

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 50 or less | 100 | No restriction |
| :--- | :--- | :--- | :--- |

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]					
Continuous pushing time [min]				$40^{\circ} \mathbf{C}$ or less	70 or less	100	No restriction
:---	:---:	:---:	:---:				

LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$

[^9]<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)
LEYG16 ${ }_{L}^{\text {M }} \square \mathrm{E}$	A/B/C	21 to 50	45 to 65\%
LEYG25 ${ }_{\text {L }} \square \mathrm{E}$	A/B/C	21 to 35	40 to 50\%
LEYG32 ${ }_{\text {L }} \square \mathrm{\square}$	A	24 to 30	50 to 70\%
	B/C	21 to 30	
LEYG40 ${ }_{\mathrm{L}}^{\mathrm{M}} \square \mathrm{E}$	A	24 to 30	50 to 65\%
	B/C	21 to 30	

<Set Values for Vertical Upward Transfer Pushing Operations>

Model	LEYG16M $\square \mathrm{E}$			LEYG25 ${ }_{\text {L }} \square \mathrm{E}$			LEYG32M $\square \mathrm{E}$			LEYG40M $\square \mathrm{E}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26
Pushing force	65\%			50\%			70\%			65\%		

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Allowable Rotational Torque of Plate: T

Model	T $[\mathrm{N} \cdot \mathrm{m}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate: θ

Size	Non-rotating accuracy θ	
	LEYG \square M $\square \mathbf{E}$	LEYG $\square \square \mathbf{E} \square$
$\mathbf{1 6}$	0.06°	0.05°
$\mathbf{2 5}$	0.05°	0.04°
$\mathbf{3 2}$		
$\mathbf{4 0}$		

Plate Displacement: δ

* The values without a load are shown.

LEYG Series \downarrow p. 545

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	-
	Ball bushing bearing	Graphs (3), (4)	Graphs (7), 8)	Graphs (9), 10

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check the "Speed-Work Load Graph" on pages 515 to 517.
(2) Over 75 mm stroke

Vertical Mounting, Ball Bushing Bearing

(4) Over $\mathbf{4 0} \mathbf{~ m m}$ stroke

* The limit of vertical load mass varies depending on "lead" and "speed." Check the "Speed-Work Load Graph" on pages 515 to 517.

Moment Load Graph
Horizontal Mounting, Sliding Bearing

Horizontal Mounting, Ball Bushing Bearing

(9) $L=50 \mathbf{~ m m ~ M a x . ~ s p e e d ~}=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(8) $L=\mathbf{1 0 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~}=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(10) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG \square M (Sliding bearing)

\triangle Caution

Handling Precautions

* When used as a stopper, select a model with a stroke of 30 mm or less.
* LEYG $\square \mathrm{L}$ (ball bushing bearing) cannot be used as a stopper
* Workpiece collision in series with guide rod cannot be permitted (Fig. a)
* The body should not be mounted on the end. It must be mounted on the top or bottom (Fig. b).

Fig. b

LEYG Series

Incremental (Step Motor 24 VDC)

* These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 513 and 514 .
Speed-Work Load Graph (Guide)
Refer to page 516 for the LECPA, JXC \square_{3}^{2} and page 517 for the LECA6. For Step Motor (Servo/24 VDC) JXC \square 1, LECP1

Horizontal

LEYG16M $\square \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG25 ${ }^{\text {² }} \square$
7 7 for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32 ${ }_{\text {M }}$ [
D 7 for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40른
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
 LEYG16 ${ }_{\text {M }} \square$

LEYG25 ${ }^{\text {M }} \square$

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

LEYG40M \square

Refer to page 515 for the JXC $\square 1$ LECP1 and page 517 for the LECA6.
Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}

Horizontal

LEYG25 ${ }^{\text {² }} \square$ $\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG32ㅆㄴㄴ \square $\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEYG40 ${ }_{\text {M }}$ ■

Vertical

LEYG16M \square

LEYG25 ${ }_{\text {M }} \square$

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

LEYG40M \square

LEYG Series

Speed-Work Load Graph (Guide)
 For Servo Motor (24 VDC) LECA6

Refer to page 515 for the JXC $\square 1$, LECP1 and page 516 for the LECPA, $J X C \square_{3}^{2}$.

Horizontal

LEYG16 ${ }_{\text {M }} \square$ A

LEYG25 ${ }_{\text {M }} \square \mathbf{A}$

Vertical

LEYG16 ${ }_{\text {M }} \square$ A

LEYG25 ${ }_{\text {L }} \square$ A

Force Conversion Graph (Guide)

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{2 5} \mathbf{5}^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0}^{\circ} \mathbf{C}$	40 or less	100	No restriction
	50	70	12 or less
	70	20	1.3 or less
	85	15	0.8 or less

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \square$

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 | No restriction |
| :---: | :---: | :---: | :---: |

LEYG32 ${ }_{\mathrm{L}}^{\mathrm{L}} \square$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0} \mathbf{C}$	65 or less	100	No restriction
	85	50	15 or less

LEYG40 ${ }_{\mathrm{L}} \square$

| Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
| :--- | :--- | :--- | :--- | | $40^{\circ} \mathrm{C}$ or less | 65 or less | 100 |
| :---: | :---: | :---: |

Servo Motor (24 VDC)

LEYG16 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	95 or less	100	No restriction

LEYG25 ${ }_{\mathrm{L}}^{\mathrm{M}} \mathrm{A} \square$

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>

Without Load

Model	Lead	Pushing speed [mm/s]	Pussing focce (Setting input value)	Model	Lead	Pushing speed [mm/s]	Pussing force (Seting input value)
LEYG16 ${ }_{\text {L }}$	A/B/C	21 to 50	60 to 85%	LEYG16IIIA	A/B/C	21 to 50	80 to 95\%
LEYG25 ${ }_{\text {L }}$	A/B/C	21 to 35	50 to 65\%	LEYG25LI'IA	A/B/C	21 to 35	80 to 95%
LEYG32 ${ }_{\text {L }}$	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEYG40 ${ }_{\text {L }}$	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEYG16[■			LEYG25L \square			LEYG32L \square			LEYG40 $\square \square$			LEYG16 ${ }^{\text {² }} \square \mathrm{A}$			LEYG25 ${ }^{\text {W }} \square \mathrm{A}$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26	0.5	1	2.5	0.5	1.5	4
Pushing force	85\%			65\%			85\%			65\%			95\%			95\%		

LEYG Series

Allowable Rotational Torque of Plate

Model	Stroke $[\mathrm{mm} \cdot \mathrm{m}]$				
	30	50	100	200	300
LEYG16M	0.70	0.57	1.05	0.56	-
LEYG16L	0.82	1.48	0.97	0.57	-
LEYG25M	1.56	1.29	3.50	2.18	1.36
LEYG25L	1.52	3.57	2.47	2.05	1.44
LEYG32M	2.55	2.09	5.39	3.26	1.88
LEYG32L	2.80	5.76	4.05	3.23	2.32
LEYG40M	2.55	2.09	5.39	3.26	1.88
LEYG40L	2.80	5.76	4.05	3.23	2.32

Non-rotating Accuracy of Plate

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{1 6}$	0.06°	0.05°
$\mathbf{2 5}$	0.05°	0.04°
$\mathbf{3 2}$		
$\mathbf{4 0}$		

Plate Displacement: δ

* The values without a load are shown.

Guide Rod Type

LEYG Series
Model Selection

LEYG Series \downarrow p. 559 LECY \square Series \downarrow p. 567

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Vertical Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	Graphs (7), 8)
	Ball bushing bearing	Graphs (3), (4)	Graphs (9), 10	Graphs (11), 12

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.
Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check the "Speed-Vertical Work Load Graph" on page 523.
Vertical Mounting, Ball Bushing Bearing

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $L=50 \mathbf{~ m m}$ Max. speed $=$ Over 200 mm/s

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $\mathrm{L}=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{O v e r} \mathbf{2 0 0 ~ m m / s}$

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m}$ Max. speed $\mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=200 \mathrm{~mm} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

LEYG Series

LEYG25 \square S2/T6 (Motor mounting position: Parallel/In-line)

LEYG32S3/T7 (Motor mounting position: Parallel)

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32DS3/T7 (Motor mounting position: In-line)

* These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 521 and 522.

LEYG25 \square S2/T6 (Motor mounting position: Parallel/In-line)

LEYG32S3/T7 (Motor mounting position: Parallel)

Required conditions for the regeneration option

* The regeneration option is required when using the product above the regeneration line in the graph. (It must be ordered separately.)

Regeneration Option Models

Size	Model
LEYG25 \square	LEC-MR-RB-032
LEYG32 \square	LEC-MR-RB-032

LEYG32DS3/T7 (Motor mounting position: In-line)

Force Conversion Graph: LECSA

LEYG25 \square S2 (Motor mounting position: Parallel/In-line)

LEYG32S3 (Motor mounting position: Parallel)

LEYG32DS3 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
25 or less	100	No restriction
30	60	1.5 or less

Force Conversion Graph: LECSS-T

LEYG25 \square T6 (Motor mounting position: Parallel/In-line)

LEYG32T7 (Motor mounting position: Parallel)

LEYG32DT7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
20 or less	100	No restriction
24	60	1.5 or less

LEYG Series

AC Servo Motor

Allowable Rotational Torque of Plate

$\mathrm{T}[\mathrm{N} \cdot \mathrm{m}]$

Model	Stroke [mm]					
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	
LEYG25M	1.56	1.29	3.50	2.18	1.36	
LEYG25L	1.52	3.57	2.47	2.05	1.44	
LEYG32M	2.55	2.09	5.39	3.26	1.88	
LEYG32L	2.80	5.76	4.05	3.23	2.32	

Non-rotating Accuracy of Plate

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{2 5}$	0.06°	0.04°
$\mathbf{3 2}$	0.05°	

Plate Displacement: δ

* The values without a load are shown.

Guide Rod Type

LEYG Series
Model Selection

LEYG Series \downarrow p. 567 LECS \square Series \downarrow p. 559

Moment Load Graph

Selection conditions

Mounting position		Vertical	Horizontal	
Max. speed [mm/s]		"Speed-Work Load Graph"	200 or less	Over 200
Bearing	Sliding bearing	Graphs (1), (2)	Graphs (5), (6)*1	Graphs (7), 8)
	Ball bushing bearing	Graphs (3), (4)	Graphs (9, (10)	Graphs (11), (12)

*1 For the sliding bearing type, the speed is restricted with a horizontal/moment load.

Vertical Mounting, Sliding Bearing

* The limit of vertical load mass varies depending on "lead" and "speed."

Check the "Speed-Work Load Graph" on page 529.
Vertical Mounting, Ball Bushing Bearing

Moment Load Graph

Horizontal Mounting, Sliding Bearing

(7) $\mathrm{L}=\mathbf{5 0} \mathbf{~ m m}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(6) $L=\mathbf{1 0 0} \mathbf{~ m m}$ Max. speed $=\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(8) $L=100$ mm Max. speed $=$ Over $\mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$

Horizontal Mounting, Ball Bushing Bearing
(9) $L=\mathbf{5 0} \mathbf{~ m m ~ M a x . ~ s p e e d ~} \mathbf{=} \mathbf{2 0 0} \mathbf{~ m m} / \mathrm{s}$ or less

(11) $L=50 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

(10) $L=100 \mathrm{~mm}$ Max. speed $=200 \mathrm{~mm} / \mathrm{s}$ or less

(12) $L=100 \mathrm{~mm}$ Max. speed $=$ Over $200 \mathrm{~mm} / \mathrm{s}$

Operating Range when Used as a Stopper

LEYG $\square \mathrm{M}$ (Sliding bearing)

LEYG Series

AC Servo Motor

Speed-Work Load Graph/Required Conditions for the Regenerative Resistor (Guide)

* These graphs show the work load when the external guide is used together. When using the LEYG alone, refer to pages 527 and 528.

LEYG25 \square V6 (Motor mounting position: Parallel/In-line)

Horizontal

LEYG32V7 (Motor mounting position: Parallel)

Vertical

Horizontal

LEYG32DV7 (Motor mounting position: In-line)

Vertical

Regenerative resistor area

* When using the actuator in the regenerative resistor area, download the "AC servo drive capacity selection program/SigmaJunmaSize+" from the SMC website. Then, calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor.
* The regenerative resistor should be provided by the customer.

Horizontal

Applicable Motors/Drivers

Model	Applicable model	
	Motor	Servopack (SMC driver)
LEYG25 \square	SGMJV-01A3A	SGDV-R90A11 \square (LECYM2-V5) SGDV-R90A21 \square (LECYU2-V5)
LEYG32 \square	SGMJV-02A3A	SGDV-1R6A11 \square (LECYM2-V7) SGDV-1R6A21 \square (LECYU2-V7)

Force Conversion Graph

LEYG25 \square V6 (Motor mounting position: Parallel/In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [min]
75 or less	100	No restriction
90	60	1.5 or less

LEYG32 \square V7 (Motor mounting position: Parallel)

LEYG32DV7 (Motor mounting position: In-line)

LEYG Series

AC Servo Motor

Allowable Rotational Torque of Plate: T

$\mathrm{T}[\mathrm{N} \cdot \mathrm{m}]$

Model	$\mathrm{T}[\mathrm{N} \cdot \mathrm{m}]$					
	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	
LEYG25M	1.56	1.29	3.50	2.18	1.36	
LEYG25L	1.52	3.57	2.47	2.05	1.44	
LEYG32M	2.55	2.09	5.39	3.26	1.88	
LEYG32L	2.80	5.76	4.05	3.23	2.32	

Non-rotating Accuracy of Plate: θ

Size	Non-rotating accuracy θ	
	LEYG $\square \mathbf{M}$	LEYG $\square \mathbf{L}$
$\mathbf{2 5}$	0.06°	0.04°
$\mathbf{3 2}$	0.05°	

Plate Displacement: δ

* The values without a load are shown.

Battery-less Absolute (Step Motor 24 VDC)

Guide Rod Type

LEYG Series LEYG16,25,32,40 ($\in \underset{\text { U }}{\text { K }}$
RoHS

For details on controllers, refer to the next page.

Lead [mm]

Symbol	LEYG16	LEYG25	LEYG32/40
A	10	12	16
\mathbf{B}	5	6	8
\mathbf{C}	2.5	3	4

6 Stroke ${ }^{* 4 * 5}$ [mm]

Stroke	Note	
	Size	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{2 0 0}$	16	$30,50,100,150,200$
$\mathbf{3 0}$ to $\mathbf{3 0 0}$	$25 / 32 / 40$	$30,50,100,150,200,250,300$

Motor option*6

C	With motor cover
W	With lock/motor cover

8 Guide option ${ }^{* 7}$

Nil	Without option
F	With grease retaining function

Actuator cable type/length
Robotic cable

Nil	None	R8	$8 * 8$
R1	1.5	RA	$10 * 8$
R3	3	RB	$15 * 8$
R5	5	RC	$20 * 8$

For details on auto switches, refer to pages 503 to 505.
Use of auto switches for the guide rod type LEYG series

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please consult with SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078
[UL certification]
The JXC series controllers used in combination with electric actuators are UL certified.
type, the motor body will stick out from the end of the body for size 16 with strokes of 50 mm or less and size 40 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*7 Only available for size 25, 32, and 40 sliding bearings (Refer to the "Construction" on page 538.)
*8 Produced upon receipt of order
*9 The DIN rail is not included. It must be ordered separately
*10 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct.
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

LEYG25MEB-100

Refer to the Operation Manual for using the products
Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	Ethernetlifux direct inputtype with STO sub-function	PROFINET direct input type	PROFNET direct inputtype with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	10.Link direct input type with STO sub-function	CC-Link direct input type
Series	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	$\begin{array}{\|c} \text { EthenNe:tipripd direct } \\ \text { input with STO } \\ \text { sub-function } \end{array}$	PROFINET direct input	PROFNET direc input with STO sub-function	DeviceNete ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Power supply voltage	24 VDC										
Reference page	1017	1063									

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

Model				LEYG16 ${ }_{\text {L }} \square \mathrm{E}$			LEYG25 ${ }_{\text {L }} \square \mathrm{E}$			LEYG32 ${ }_{\text {L }} \square \mathrm{E}$			LEYG40 ${ }_{\text {L }} \square \mathrm{D}$		
	Work load [kg] ${ }^{* 1}$	Horizontal	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	6	17	30	20	40	60	30	45	60	50	60	80
			Acceleration/Deceleration at $2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	10	23	35	30	55	70	40	60	80	60	70	90
		Vertical	Acceleration/Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
	Pushing force [N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed [mm/s]*4			15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 300	6 to 150
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000											
	Pushing speed [mm/s]*5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm]*6			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$			50/20											
	Actuation type			Ball screw + Belt (LEYG $\square \square$), Ball screw (LEYG $\square \square \mathrm{D}$)											
	Guide type			Sliding bearing (LEYG $\square \mathrm{M}$), Ball bushing bearing (LEYG $\square \mathrm{L}$)											
	Operating temp. range [${ }^{\circ} \mathrm{C}$]			5 to 40											
	Operating humidity range [\%RH]			90 or less (No condensation)											
	Enclosure			IP40											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery-less absolute (Step motor 24 VDC)											
	Encoder			Battery-less absolute											
	Power supply voltage [V]			24 VDC $\pm 10 \%$											
	Power [W]*8*10			Max. power 43			Max. power 48			Max. power 104			Max. power 106		
-	Type*9			Non-magnetizing lock											
	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
	Power [W]*10			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

*1 Horizontal: An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check the "Model Selection" on pages 507 to 509.
Vertical: Speed changes according to the work load. Check the "Model Selection" on pages 507 to 509.
Set the acceleration/deceleration values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The pushing force values for LEYG16 $\square \square$ E are 20% to 65%, for LEYG25 $\square \square$ E are 30% to 50%, for LEYG32 $\square \square E$ are 30% to 70%, and for LEYG40 $\square \square E$ are 35% to 65%.
The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 510
*4 The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
When [M: Sliding bearing] is selected, the maximum speed of lead [A] is $400 \mathrm{~mm} / \mathrm{s}$ (at no-load, horizontal mounting).
The speed is also restricted with a horizontal/moment load. For details, refer to the "Model Selection" on page 508.
*5 The allowable speed for the pushing operation
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when it was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.

Weight

Weight: Top Side Parallel Motor Type

Series	LEYG16MDE					LEYG25MDE							LEYG32MDE						
Stroke [mm]	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	1	1.14	1.37	1.66	1.83	1.7	1.89	2.21	2.63	2.97	3.31	3.57	2.95	3.21	3.76	4.32	4.99	5.48	5.92

Series	LEYG16L $\square \mathrm{E}$					LEYG25L口E							LEYG32L \square E						
Stroke [mm]	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	1.01	1.14	1.31	1.6	1.75	1.71	1.92	2.16	2.59	2.85	3.17	3.41	2.95	3.22	3.61	4.16	4.7	5.21	5.6

Series	LEYG40M $\square \mathbf{E}$					LEYG40L $\square E$								
Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	3.26	3.52	4.07	4.63	5.3	5.79	6.23	3.26	3.53	3.92	4.47	5.01	5.52	5.91

Weight: In-line Motor Type

Series	LEYG16MDE					LEYG25MDE							LEYG32M $\square \mathrm{E}$						
Stroke [mm]	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	0.97	1.11	1.34	1.68	1.8	1.09	1.88	2.20	2.62	2.96	3.30	3.56	2.96	3.20	3.75	4.81	4.98	5.47	5.91

Series	LEYG16L $\square \mathrm{E}$					LEYG25L \square E							LEYG32L $\square \mathrm{E}$						
Stroke [mm]	30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	0.98	1.11	1.28	1.57	1.72	1.70	1.91	2.15	2.58	2.84	3.16	3.40	2.54	3.21	3.60	4.15	4.69	5.20	5.59

Series	LEYG40M $\square \mathbf{E}$				LEYG40L $\square \mathrm{E}$									
Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight [kg]	3.25	3.51	4.06	4.62	5.25	5.78	6.22	3.25	3.52	3.91	4.46	5.00	5.51	5.90

Additional Weight
Additional Weight

Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock/Motor cover	0.16	0.29	0.57	0.57

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Construction

Top side parallel motor type: LEYG $\begin{gathered}25 \\ 32 \\ 40\end{gathered}$

Top side parallel motor type, With lock/motor cover

In-line motor type

Top side parallel motor type: LEYG16E

In-line motor type, With lock/motor cover

In-line motor type: LEYG16E

Construction

LEYG $\square M$

$\operatorname{LEYG}_{32}{ }_{40}^{16} \mathrm{M}: 50$ st or less

When grease retaining function selected LEYG ${ }_{32}^{25} \mathrm{M} \square \square \stackrel{\mathrm{C}}{\mathrm{B}}-\square \square \mathrm{F}$: 50st or less

LEYG ${ }_{30}^{25} \mathrm{M} \square \square \square \mathrm{C}-\square \square \mathrm{F}$: Over 50st

* Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG $\square \mathbf{L}$

LEYG16L: 30st or less
LEYG ${ }_{40}^{25} \mathrm{~L}: 100$ st or less

LEYG16L: Over 30st, 100st or less

LEYG ${ }_{32}^{165} \mathrm{~L}$: Over 100st

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor	-	
24	Motor cover	Aluminum alloy	Anodized/LEY16 only
	Synthetic resin		
25	Grommet	Synthetic resin	Only "With motor cover"
26	Guide attachment	Aluminum alloy	Anodized
27	Guide rod	Carbon steel	

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Top Side Parallel Motor
*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to \times origin has changed
*4 Through holes cannot be used for size $32 / 40$ with strokes of 50 mm or less.

Section Y details

Section XX
$4 \times$ OA through

\propto XA H9 depth XA
[2]

$₫$ XA H9 depth XA $4 \times$ OA thread depth OB

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
16	30 to 90	75	8
	95 to 100	95	
	105 to 200	105	
25	30 to 110	91	10
	115 to 190	115	
	195 to 300	133	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

Size	Stroke range	L	DB
16	30 to 60	51.5	10
	65 to 90	74.5	
	95 to 100	95	
	105 to 200	105	
25	30 to 55	67.5	12
	60 to 185	100.5	
	190 to 300	138	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 50	74	16
	55 to 180	107	
	185 to 300	144	

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G G	GA	H	J	K	M	NA	NB	NC	
16	30 to 35	109	90.5	37	16	35	69	83	41.1	8	10.5	8.5	4.3	31.8	97.3	24.8	23	25.5	M 4×0.7	7	5.5	
	40 to 100			52																		
	105 to 200	129	110.5	82																		
25	30 to 35	141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5	
	40 to 100	166.5	141	67.5																		
	125 to 200			84.5																		
	205 to 300			102																		
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6x 1.0	10	8.5	
	40 to 100	190.5	160	68																		
	125 to 200			85																		
	205 to 300			102																		
Size	Stroke range	OA	OB	P	Q	S	T	T2	U	WA	WB	WC	X2			X	XA	XB	Y	Z		
	30 to 35									25	19		100.5	145.5		44	3	4	22.5	6.5		
16	40 to 100	M5 $\times 0.8$	10	65	15	25	79	-	6.8	40	26.5	55										
	105 to 200									70	41.5	75										
25	30 to 35	M6 x 1.0	12	80	18	30	95	7.5	6.8	35	26	70	88.5	129			54	4	5	26.5	8.5	
	40 to 100																					
	105 to 120										33.5	95										
	125 to 200									70	43.5											
	205 to 300									85	51											
32	30 to 35	M6 x 1.0	12	95	28	40	117	8.5	7.3	40	28.5	75	98.5		41.5		64	5	6	34	8.5	
	40 to 100									50	33.5											
	125 to 200									70	43.5	105										
	205 to 300									85	51											
40	30 to 35	M6 x 1.0	12	95	28	40	117	8.5	7.3	40	28.5	75	120.5	163.5		64	5	6	34	8.5		
	40 to 100									50	33.5											
	125 to 200									70	43.5	105										
	205 to 300									85	51											

Dimensions: Top Side Parallel Motor

25 A

With lock/motor cover: LEYG32E $\square \mathbf{B}-\square \mathbf{C}$

A
With motor cover: LEYG16EB- \square C
C

A
With lock/motor cover: LEYG16EB- \square W
C

LEYG Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin.
Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
2 Position after returning to origin
*3 [] for when the direction of return to origin has changed

depth XA
[mm]

Size	Stroke range	L	DB
16	30 to 90	75	8
	95 to 100	95	
	105 to 200	105	
25	30 to 110	91	10
	115 to 190	115	
	195 to 300	133	
	30 to 110	97.5	
40	115 to 190	116.5	13

$\xrightarrow{\text { ating range* }}$

LEYG \square M, LEYG \square L Common

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range	L	DB
16	30 to 60	51.5	10
	65 to 90	74.5	
	95 to 100	95	
	105 to 200	105	
25	30 to 55	67.5	12
	60 to 185	100.5	
	190 to 300	138	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 50	74	16
	55 to 180	107	
	185 to 300	144	

Dimensions: In-line Motor
25 A
With lock/motor cover: LEYG32DE $\square \mathrm{B}-\square \mathbf{W}$
40

C

Size	Stroke range	T2	X2	L	H	CV
16	Up to 100	7.5	108	35	$42.3^{* 1}$	-
	105 to 200					
25	Up to 100	7.5	109	46	61.3	54.4
	105 to 300					
32	Up to 100	7.5	116.5	60	75.8	68.5
	105 to 300					
40	Up to 100	7.5	138.5	60	75.8	68.5
	105 to 300					

*1 Refer to the table below.

A
With motor cover: LEYG16D $\square E B-\square C$ C

A
With lock/motor cover: LEYG16D $\square E B-\square W$
C

H Dimensions (Size 16)

Motor cover direction	\mathbf{H}
\mathbf{D}_{1}	42.3
\mathbf{D}_{2}	42.3
\mathbf{D}_{3}	55.1
\mathbf{D}_{4}	47

Motor Cover Direction

LEYG Series

Support Block

-Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

$\mathbf{0 1 6}$	For size 16
$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For sizes 32, 40

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	Up to 100	69	4.3	31.8	M5 x 0.8	10	16	55	44
		105 to 200							75	
25	LEYG-S025	Up to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	Up to 100	101	(5.4)	(50.3)	M6 x 1.0	12	22	75	64
40		105 to 300							105	

* Two body mounting screws are included with the support block.
* The through holes of the LEYG-S032 cannot be used for the top side parallel motor type. Use taps on the bottom.

Guide Rod Type

LEYG Series LEYG16, 25,32, 40

* For details, refer to page 1343 and onward.

1$)$ Size
16
25
32
40

2 Bearing type*1
M
Sliding bearing
L

(3) Motor mounting position

Nil	Top side parallel
\mathbf{D}	In-line

(4) Motor type

Symbol	Type	Applicable size			Compatible controllers/ drivers		
		LEYG25	LEYG32/40		JXC51 JXCD1 JXC61 JXCPF Nil Step motor (Servo/24 VDC) JXCE1 JXCM1	JXCLF	
JXC91	JXCEF	LECP1					
AXCP1	JXC9F	LECPA					

5 Lead [mm]

Symbol	LEYG16	LEYG25	LEYG $32 / 40$
A	10	12	16
B	5	6	8
C	2.5	3	4

6 Stroke ${ }^{* 2 * 3}$ [mm]	
30	30
to	to
300	300

* For details, refer to the applicable stroke table below.
7 Motor option*4

Nil	Without option
C	With motor cover
\mathbf{B}	With lock
\mathbf{W}	With lock/motor cover

8 Guide option*5

Nil	Without option
\mathbf{F}	With grease retaining function

Actuator cable type/length*7

Standard cable [m]	
Nil	None
S1	$1.5^{* 9}$
S3	$3^{* 9}$
S5	$5^{* 9}$

Robotic cable

R1	1.5	RA	$10 * 6$	
R3	3	RB	$15^{* 6}$	
R5	5	RC	$20^{* 6}$	
R8	$8^{* 6}$			

Applicable Stroke Table*2
: Standard

Model	30	50	100	150	200	250	300	Manufacturable stroke range [mm]
LEYG16	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	10 to 200
LEYG25	\bigcirc	15 to 300						
LEYG32/40	\bigcirc	20 to 300						

For auto switches, refer to pages 503 to 505.

[^10]
Communication plug connector, I/O cable $* 14$

Symbol	Type	Applicable interface
$\mathbf{N i l}$	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

$L E C \square$ Series (For dealils, reler to page 547.)

10 Controller/Driver type*8

Nil	Without controller/driver	
6N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1 $* 9$	NPN
1P	(Programless type)	PNP
AN	LECPA $* 9 * 10$	NPN
AP	AP	(Pulse input type)

(11) 10 cable length ${ }^{* 11}$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 12}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 12}$

12 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail*13

*1 When [M: Sliding bearing] is selected, the max. speed of lead [A] is 400 mm / s (at no-load, horizontal mounting). The speed is also restricted with a horizontal/moment load. Refer to the "Model Selection" on page 514.
*2 Please contact SMC for non-standard strokes as they are produced as special orders.
*3 There is a limit for mounting the size 32/40 top side parallel motor types and strokes of 50 mm or less. Refer to the dimensions.
*4 When "With lock" or "With lock/motor cover" is selected for the top side parallel motor type, the motor body will stick out from the end of the body for size $16 / 40$ with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.
*5 Only available for size 25, 32, and 40 sliding bearings (Refer to the "Construction" on page 552.)
*6 Produced upon receipt of order (Robotic cable only)
*7 The standard cable should only be used on fixed parts.
For use on moving parts, select the robotic cable.
Refer to pages 1092 and 1093 if only the actuator cable is required.
*8 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*9 Only available for the motor type "Step motor"
*10 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately
*11 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*12 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*13 The DIN rail is not included. It must be ordered separately
*14 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP)

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEYG Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

| | Step data
 input type | Step data
 input type | Programless type | Pulse input type |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type | | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Model				LEYG16 ${ }_{\text {M }}$			LEYG25 ${ }_{\text {L }}$			LEYG32 ${ }_{\text {L }}$			LEYG40 ${ }_{\text {L }}$		
	Work load ［kg］＊1	Horizontal（XXCI，JXCCFLECP 1$)$	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	6	17	30	20	40	60	30	45	60	50	60	80
			$\begin{gathered} \text { Acceleration/Decelelation } \\ \text { at } 2000\left[\mathrm{~mm} / \mathrm{s}^{2}\right] \end{gathered}$	10	23	35	30	55	70	40	60	80	60	70	90
			Acceleration／Decceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	4	11	20	12	30	30	20	40	40	30	60	60
			Acceleration／Decceleration at 2000 ［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$	6	17	30	18	50	50	30	60	60	－	－	－
		Vertical	Acceleration／Decceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	7	15	29	9	20	41	11	25	51
	Pushing force［ N$]^{* 2 * 3 * 4}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed		C $\square 1 / L E C P 1$	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
	［mm／s］＊4		CPA／JXC $\square \frac{2}{3}$								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
	Max．acceleration／deceleration［mm／s²］			3000											
	Pushing speed［mm／s］＊5			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02											
	Lost motion［mm］${ }^{* 6}$			0.1 or less											
	Screw lead［mm］			10	5	2.5	12	6	3	16	8	4	16	8	4
	ImpactVibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50／20											
	Actuation type			Ball screw＋Belt（LEYGロП），Ball screw（LEYGロロD）											
	Guide typ			Sliding bearing（LEYG \square M），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）											
	Operating temp．range［ ${ }^{\mathbf{C}}$ ］			5 to 40											
	Operating humidity range［\％RH］			90 or less（No condensation）											
	Enclosure			IP40											
	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor（Servo／24 VDC）											
	Encoder			Incremental											
	Power supply voltage［V］			24 VDC $\pm 10 \%$											
	Power［W］＊8＊10			Max．power 43			Max．power 48			Max．power 104			Max．power 106		
	Type＊9			Non－magnetizing lock											
	Holding force［ N ］			20	39	78	78	157	294	108	216	421	127	265	519
	Power［W］＊10			2.9			5			5			5		
	Rated voltage［V］			$24 \mathrm{VDC} \pm 10 \%$											

＊1 Horizontal：An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check the＂Model Selection＂on pages 515 and 516.
Vertical：Speed changes according to the work load．Check the＂Model Selection＂on pages 515 and 516.
Set the acceleration／deceleration values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The pushing force values for LEYG16 $\square \square$ are 35% to 85% ，for LEYG25 $\square \square$ are 35% to 65% ，for LEYG32 $\square \square$ are 35% to 85% ，and for LEYG40 $\square \square$ are 35% to 65% ．The pushing force values change according to the duty ratio and pushing speed．Check the＂Model Selection＂on page 518.
＊4 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20\％）
When［M：Sliding bearing］is selected，the max．speed of lead［A］is $400 \mathrm{~mm} / \mathrm{s}$（at no－load，horizontal mounting）．
The speed is also restricted with a horizontal／moment load．Refer to the＂Model Selection＂on page 514.
＊5 The allowable speed for the pushing operation
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Indicates the max．power during operation（including the controller）．This value can be used for the selection of the power supply．
＊9 With lock only
＊10 For an actuator with lock，add the power for the lock．

Specifications

Servo Motor（24 VDC）

Model				LEYG16 ${ }_{\text {L }} \square \mathbf{A}$			LEYG25 ${ }_{\text {L }} \square \mathbf{A}$		
	Work load ［kg］${ }^{* 1}$	Horiontal	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	3	6	12	7	15	30
		Vertical	Acceleration／Deceleration at $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$	1.5	3.5	7.5	2	5	11
	Pushing force［ N$]^{* 2 * 3}$			16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed［mm／s］			1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max．acceleration／deceleration［mm／s²］			3000					
	Pushing speed［mm／s］＊4			50 or less			35 or less		
	Positioning repeatability［mm］			± 0.02					
	Lost motion［mm］＊5			0.1 or less					
	Screw lead［mm］			10	5	2.5	12	6	3
	Impact／Vibration resistance［m／s ${ }^{2}{ }^{* 6}$			50／20					
	Actuation type			Ball screw＋Belt（LEYG $\square \square$ ），Ball screw（LEYG $\square \square \mathrm{D}$ ）					
	Guide type			Sliding bearing（LEYG $\square \mathrm{M}$ ），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）					
	Operating temp．range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）					
	Enclosure			IP40					
	Motor size			$\square 28$			$\square 42$		
	Motor output［W］			30			36		
	Motor type			Servo motor（24 VDC）					
	Encoder			Incremental					
	Power supply voltage［V］			24 VDC $\pm 10 \%$					
	Power［W］＊7＊9			Max．power 59			Max．power 96		
－	Type＊8			Non－magnetizing lock					
它筞	Holding force［N］			20	39	78	78	157	294
皆：	Power［W］${ }^{* 9}$			2.9			5		
क	Rated voltage［V］			24 VDC $\pm 10 \%$					

＊1 Horizontal：An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide．
Vertical：Check the＂Model Selection＂on page 517 for details．
Set the acceleration／deceleration values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The thrust setting values for LEYG16 \square A \square are 60% to 95% and for LEYG25 \square A \square are 70% to 95% ．The pushing force values change according to the duty ratio and pushing speed． Check the＂Model Selection＂on page 518.
＊4 The allowable speed for the pushing operation
＊5 A reference value for correcting errors in reciprocal operation
＊6 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw． （The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊7 Indicates the max．power during operation （including the controller）．This value can be used for the selection of the power supply．
＊8 With lock only
＊9 For an actuator with lock，add the power for the lock．

Weight

Weight：Top Side Parallel Motor Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.83	0.97	1.20	1.49	1.66	1.67	1.86	2.18	2.60	2.94	3.28	3.54	2.91	3.17	3.72	4.28	4.95	5.44	5.88
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.63	1.82	2.14	2.56	2.90	3.24	3.50	－	－	－	－	－	－	－
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.84	0.97	1.14	1.43	1.58	1.68	1.89	2.13	2.56	2.82	3.14	3.38	2.91	3.18	3.57	4.12	4.66	5.17	5.56
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.64	1.85	2.09	2.52	2.78	3.10	3.34	－	－	－	－	－	－	－
Model		LEYG40M							LEYG40L											
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight［kg］	Step motor	3.21	3.47	4.02	4.58	5.25	5.74	6.18	3.21	3.48	3.87	4.42	4.96	5.47	5.86					
	Servo motor	－	－	－	－	－	－	－	－	－	－	－	－	－	－					

Weight：In－line Motor Type

Model		LEYG16M					LEYG25M							LEYG32M						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.83	0.97	1.20	1.49	1.66	1.66	1.85	2.17	2.59	2.93	3.27	3.53	2.90	3.16	3.71	4.27	4.94	5.43	5.87
	Servo motor	0.83	0.97	1.20	1.49	1.66	1.62	1.81	2.13	2.55	2.89	3.23	3.49	－	－	－	－	－	－	－
Model		LEYG16L					LEYG25L							LEYG32L						
Stroke［mm］		30	50	100	150	200	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Product weight［kg］	Step motor	0.84	0.97	1.14	1.43	1.58	1.67	1.88	2.12	2.55	2.81	3.13	3.37	2.90	3.17	3.56	4.11	4.65	5.16	5.55
	Servo motor	0.84	0.97	1.14	1.43	1.58	1.63	1.84	2.08	2.51	2.77	3.09	3.33	－	－	－	－	－	－	－
Model		LEYG40M							LEYG40L											
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300					
Product weight［kg］	Step motor	3.20	3.46	4.01	4.57	5.24	5.73	6.17	3.20	3.47	3.86	4.41	4.95	5.46	5.85					
	Servo motor	－	－	－	－	－	－	－	－	－	－	－	－	－	－					

Additional Weight

Size	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53
Motor cover	0.02	0.03	0.04	0.05
Lock／Motor cover	0.16	0.32	0.61	0.62

LEYG Series

Construction

Top side parallel motor type

In-line motor type

In-line motor type With lock/motor cover

Construction

LEYG $\square M$

$\operatorname{LEYG}_{32}{ }_{40}^{16} \mathrm{M}: 50$ st or less

LEYG $\mathrm{G}_{32}^{165} \mathbf{1 6}$: Over 50st

When grease retaining function selected LEYG ${ }_{32}^{25} \mathrm{M} \square \square \stackrel{\mathrm{C}}{\mathrm{B}}-\square \square \mathrm{F}$: 50st or less

LEYG ${ }_{40}^{25}{ }_{40}^{25} \square \square \square_{\mathrm{C}}^{\mathrm{A}}-\square \square \mathrm{F}$: Over 50st

* Felt material is inserted to retain grease at the sliding part of the sliding bearing. This lengthens the life of the sliding part, but does not guarantee it permanently.

LEYG \square L

LEYG16L: 30st or less

LEYG ${ }_{40}^{25} \mathrm{~L}$: 100st or less

LEYG16L: Over 30st, 100st or less

LEYG ${ }_{32}^{165} \mathrm{~L}$: Over 100st

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coated
23	Motor	-	
24	Motor cover	Synthetic resin	Only "With motor cover"
25	Grommet	Synthetic resin	Only "With motor cover"
26	Guide attachment	Aluminum alloy	Anodized
27	Guide rod	Carbon steel	

No.	Description	Material	Note
$\mathbf{2 8}$	Plate	Aluminum alloy	Anodized
$\mathbf{2 9}$	Plate mounting cap screw	Carbon steel	Nickel plating
$\mathbf{3 0}$	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 1}$	Sliding bearing	Bearing alloy	
$\mathbf{3 2}$	Lube-retainer	Felt	
$\mathbf{3 3}$	Holder	Synthetic resin	
$\mathbf{3 4}$	Retaining ring	Steel for spring	Phosphate coating
$\mathbf{3 5}$	Ball bushing	-	
$\mathbf{3 6}$	Spacer	Aluminum alloy	Chromating
$\mathbf{3 7}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 8}$	Motor adapter	Aluminum alloy	Anodized/LEY16, 25 only
$\mathbf{3 9}$	Hub	Aluminum alloy	
$\mathbf{4 0}$	Spider	NBR	
$\mathbf{4 1}$	Motor cover with lock	Aluminum alloy	Only "With lock/motor cover"
$\mathbf{4 2}$	Cover support	Aluminum alloy	Only "With lock/motor cover"'

Replacement Parts/Belt

No.	Size	Order no.
20	16	LE-D-2-1
	25	LE-D-2-2
	32,40	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

LEYG Series

Dimensions: Top Side Parallel Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 Through holes cannot be used for size $32 / 40$ with strokes of 50 mm or less.

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
	30 to 90	75	8
	95 to 200	105	
$\mathbf{2 5}$	30 to 110	91	10
	115 to 190	115	
	195 to 300	133	
$\mathbf{3 2}$	30 to 110	97.5	
	115 to 190	116.5	
	195 to 300	134	

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
16	30 to 35	109	90.5	37	16	35	69	83	41.1	8	10.5	8.5	4.3	31.8	74.3	24.8	23	25.5	M 4×0.7	7	5.5
	40 to 100			52																	
	105 to 200	129	110.5	82																	
25	30 to 35	141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5
	40 to 100	166.5	141	67.5																	
	125 to 200			84.5																	
	205 to 300			102																	
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	30 to 35	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6x 1.0	10	8.5
	40 to 100	190.5	160	68																	
	125 to 200			85																	
	205 to 300			102																	
Size	Stroke range	OA	OB	P	Q	S	T	U	V	Step	Votor	Servo	Motor	WA	WB	WC	X	XA	XB	Y	Z
	30 to 35	M5 x 0.8	10	65	15	25	79	6.8	28	80.3	61.8	81	62.5	25	19		44	3	4	22.5	6.5
16	40 to 100													40	26.5	55					
	105 to 200													70	41.5	75					
25	30 to 35	M6x 1.0	12	80	18	30	95	6.8	42	85.4	63.4	81.6	59.6	35	26	70	54	4	5	26.5	8.5
	40 to 100													50	33.5						
	105 to 120													70	43.5	95					
	205 to 300													85	51						
32	30 to 35	M6x 1.0	12	95	28	40	117	7.3	56.4	95.4	68.4	-		40	28.5	75	64	5	6	34	8.5
	40 to 100															75					
	105 to 120															105					
	125 to 200													70	43.5						
40	30 to 35	M6x 1.0	12	95	28	40	117	7.3	56.4	117.4	90.4	-	-	40	28.5		64	5		34	8.5
	40 to 100															75			6		
	105 to 120															105					
	125 to 200													70	43.5						
	205 to 300													85	51						

Dimensions: Top Side Parallel Motor

		$[\mathrm{mm}]$
Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

Motor cover material: Synthetic resin

				$[\mathrm{mm}]$	
Size	Step motor		Servo motor		
	\mathbf{W}	\mathbf{X}	\mathbf{W}	\mathbf{X}	
$\mathbf{1 6}$	103.3	121.8	104.0	122.5	
$\mathbf{2 5}$	103.9	125.9	100.1	122.1	
$\mathbf{3 2}$	111.4	138.4	-	-	
$\mathbf{4 0}$	133.4	160.4	-	-	

Size	$\mathbf{T}_{\mathbf{2}}$	$\mathbf{X m}_{\mathbf{2}}$
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

LEYG Series

Incremental (Step Motor 24 VDC)

Dimensions: In-line Motor

*1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod
*2 Position after returning to origin
*3 [] for when the direction of return to

LEYG \square M, LEYG \square L Common

Dimensions: In-line Motor

With motor cover: $\operatorname{LEYG}_{32}^{16} \stackrel{A}{25} \square \mathbf{A}-\square C$

Size	Stroke range	Step motor	Servo motor	Step motor	Servo motor
		A		VB	
16	Up to 100	215.8	216.5	103.3	104
	105 to 200	235.8	236.5		
25	Up to 100	246.9	243.1	103.9	100.1
	105 to 300	271.9	268.1		
32	Up to 100	271.9	-	111.4	-
	105 to 300	301.9	-		
40	Up to 100	293.9	-	133.4	-
	105 to 300	323.9	-		

Size	Stroke range	A	T2	X2	L	H	CV
16	Up to 100	177	7.5	66.5	35	49.8	43
	105 to 200	197					
25	Up to 100	209.5	7.5	68.5	46	61.3	54.5
	105 to 300	234.5					
32	Up to 100	232	7.5	73.5	60	75.8	68.5
	105 to 300	262					
40	Up to 100	254	7.5	95.5	60	75.8	68.5
	105 to 300	284					

[mm] | . |
| :---: |
| 5 |
| 6.5 |

m

With lock/motor cover: LEYG $\begin{gathered}16 \\ 32 \\ 40 \\ D\end{gathered} \stackrel{A}{B}-\square W$

Size	Stroke range	A	T2	X2	L	H	CV
16	Up to 100	218.5	7.5	108	35	49.8	43
	105 to 200	238.5					
25	Up to 100	250	7.5	109	46	61.3	54.4
	105 to 300	275					
32	Up to 100	275	7.5	116.5	60	75.8	68.5
	105 to 300	305					
40	Up to 100	297	7.5	138.5	60	75.8	68.5
	105 to 300	327					

LEYG Series

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S016

$\mathbf{0 1 6}$	For size 16
$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For sizes 32, 40

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
16	LEYG-S016	Up to 100	69	4.3	31.8	M5 x 0.8	10	16	55	44
		105 to 200							75	
25	LEYG-S025	Up to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	Up to 100	101	(5.4)	(50.3)	M6 x 1.0	12	22	75	64
40		105 to 300							105	

* Two body mounting screws are included with the support block.
* The through holes of the LEYG-S032 cannot be used for the top side parallel motor type. Use taps on the bottom.

LECY \square Series $>$ p. 567

How to Order

(3) Bearing type

\mathbf{M}	Sliding bearing
\mathbf{L}	Ball bushing bearing

4 Motor mounting position

Nil	Top side parallel
\mathbf{D}	In-line

Motor type*1

Symbol	Type	Output [W]	$\begin{gathered} \mathbf{2} \\ \text { Size } \end{gathered}$	Driver type	Compatible drivers*3
S2*1	AC servo motor (Incremental encoder)	100	25	A1/A2	LECSA■-S1
S3		200	32	A1/A2	LECSA■-S3
T6*2	AC servo motor (Absolute encoder)	100	25	B2	LECSB2-T5
				C2	LECSC2-T5
				S2	LECSS2-T5
T7		200	32	B2	LECSB2-T7
				C2	LECSC2-T7
				S2	LECSS2-T7

*1 For motor type S2, the compatible driver part number suffix is S 1 .
*2 For motor type T6, the compatible driver part number is LECS $\square 2-\mathrm{T} 5$.
*3 For details on the driver, refer to page 1100.

7 Stroke [mm]
$\mathbf{3 0}$ 30 to to $\mathbf{3 0 0}$ 300

* For details, refer to the applicable stroke table below.
* There is a limit for mounting the size 32 top side parallel motor type and strokes of 50 mm or less. Refer to the dimensions.

10 Cable type ${ }^{* 1 * 2}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

*1 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option "B: With lock" is selected.)
*2 Standard cable entry direction is

- Top side parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 1123 for details.)

8 Motor option

Nil	Without option
\mathbf{B}	With lock

11 Cable length*1 [m]

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*1 The length of the motor, encoder, and lock cables are the same.

9 Guide option

$\mathbf{N i l}$	Without option
\mathbf{F}	With grease retaining function

* Only available for size 25 and 32 sliding bearings (Refer to the "Construction" on page 562.)

Applicable Stroke Table

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{c}\text { Stroke } \\ \text { [mm }\end{array} & 30 & 50 & 100 & 150 & 200 & 250 & 300\end{array} \begin{array}{c}\text { Manufacturable } \\ \text { stroke range }\end{array}\right]$

[^11]

12 Driver type*1

Nil	Compatible drivers	Power supply voltage [V]
A1	LECSA1-S \square	-
A2	LECSA2-S \square	100 to 120
B2	LECSB2-T \square	200 to 230
C2	LECSC2-T \square	200 to 240
S2	LECSS2-T \square	230 to 240

*1 When a driver type is selected, a cable is included. Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil: Without cable and driver

13 I/O cable length [m]*

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to page 1124 if an I/O cable is required.
(Options are shown on page 1124.)

Use of auto switches for the guide rod type LEYG series

- Auto switches must be inserted from the front side with the rod (plate) sticking out. Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
Please contact SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

Compatible Drivers

	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	
Driver type				

Specifications

Model			LEYG25■S2／T6（Parallel）			LEYG32 \square S3／T7（Parallel）			LEYG32 \square DS3／T7（ （n－line）		
		Horizonta＊${ }^{\text {＊}}$	18	50	50	30	60	60	30	60	60
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44
	Force［ N ］${ }^{\text {2 }}$（Set value： 15 to 30% ）＊8		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／s］＊3		35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s²］		5000			5000					
	Positioning repeatability［mm］	Basic type	± 0.02								
		High．rececision type	± 0.01								
	Lost motion＊4［mm］	Basic type	0.1 or less								
		High．precisiontype	0.05 or less								
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 5}$			50／20		50／20					
	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1．25：1］			Ball screw		
	Guide type		Sliding bearing（LEYGロM），Ball bushing bearing（LEYGロL）								
	Operating temperature range［ $\left.{ }^{\circ} \mathrm{C}\right]$		5 to 40			5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（ No condensation）					
	Enclosure		IP40								
	Regeneration option		May be required depending on speed and work load（Refer to page 523．）								
范	Motor output／Size		$100 \mathrm{~W} / \square 40$			200 W／D60					
	Motor type		AC servo motor（100／200 VAC）			AC servo motor（100／200 VAC）					
	Encoder＊9		Motor type S2，S3：Incremental 17－bit encoder（Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ） Motor type T6，T7：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）（For LECSB2－TD，LECSS2－TD） Motor type T6，T7：Absolute 18－bit encoder（Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）（For LECSC－TD）								
	Power［W］＊6		Max．power 445			Max．power 724			Max．power 724		
	Type＊7		Non－magnetizing lock			Non－magnetizing lock					
5	Holding force［ N ］		131	255	485	157	308	588	197	385	736
或：	Power at $20^{\circ} \mathrm{C}[\mathrm{W}]$		6.3			7.9			7.9		
			$24 \mathrm{VDC}_{-10 \%}$								

＊1 This is the max．value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide． Confirm the load using the actual device．
＊2 The force setting range（set values for the driver）for the force control with the torque control mode．Set it while referencing the＂Force Conversion Graph＂on page 524.
The drivers applicable to the pushing operation are＂LECSB－T＂and＂LECSS－T．＂ The LECSB2－T is only applicable when the control method is positioning． The point table is used to set the pushing operation settings．
To set the pushing operation settings，an additional dedicated file（pushing operation extension file）must be downloaded separately to be used with the setup software（MR Configurator2TM：LEC－MRC2 \square ）．Please download this dedicated file from the SMC website：https：／／www．smcworld．com
When selecting the LECSS2－T，combine it with upper level equipment （such as the Simple Motion module manufactured by Mitsubishi Electric Corporation）which has a pushing operation function．
＊＊For customer－provided PLC and motion controller setting and usage instructions，confirm with the retailer or manufacturer．
． 3 The allowable collision speed for collision with the workpiece with the torque control mode
＊4 A reference value for correcting errors in reciprocal operation
＊5 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Indicates the max．power during operation（including the driver）
When selecting the power supply capacity，refer to the power supply capacity in the operation manual of each driver
＊7 Only when motor option＂With lock＂is selected
＊8 For motor types T6 and T7，the set value is 12 to 24% ．
＊9 For motor types T6 and T7，the resolution will change depending on the driver type．

Weight

Weight：Top Side Parallel Motor Type

Stroke［mm］		LEYG25MS2／T6							LEYG32MS3／T7						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Incremental encoder	1.80	1.99	2.31	2.73	3.07	3.41	3.67	3.24	3.50	4.05	4.80	5.35	5.83	6.28
	Absolute encoder［ T_{7}^{6} ］	1.8	2.0	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.7	6.2
Series		LEYG25LS2／T6							LEYG32LS3／T7						
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\circ} \text { o } \\ \stackrel{0}{2} \\ \hline \end{array}$	Incremental encoder	1.81	2.02	2.26	2.69	2.95	3.27	3.51	3.24	3.51	3.9	4.64	5.06	5.56	5.96
	Absolute encoder［ T_{7}^{6} ］	1.9	2.1	2.3	2.7	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Weight：In－line Motor Type

SeriesStroke $[\mathrm{mm}]$		LEYG25MDS2／T6							LEYG32MDS3／T7						
		30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\circ}{0} \text { o } \\ \stackrel{2}{2} \\ \hline \end{array}$	Incremental encoder	1.83	2.02	2.34	2.76	3.10	3.44	3.70	3.26	3.52	4.07	4.82	5.37	5.85	6.30
	Absolute encoder［ T_{7}^{6} ］	1.9	2.1	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series		LEYG25LDS2／T6							LEYG32LDS3／T7						
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300
$$	Incremental encoder	1.84	2.05	2.29	2.72	2.98	3.30	3.54	3.26	3.53	3.92	4.66	5.08	5.58	5.98
	Absolute encoder［ ${ }_{7}^{6}$ ］	1.9	2.1	2.3	2.8	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight

Size		［kg］	
Lock	Incremental encoder	0.20	$\mathbf{3 2}$
	Absolute encoder $\left[\mathbf{T}_{7}^{6}\right]$	0.3	0.7

Construction

Motor mounting position: Top side parallel motor type

LEYG $\square \mathrm{M}$

LEYG \square L

When grease retaining function selected
LEYG25/32M: 50st or less

LEYG25/32M: Over 50st

LEYG25/32M: 50st or less

LEYG25/32M: Over 50st

LEYG25/32L: 100st or less

LEYG25/32L: Over 100st

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor adapter	Aluminum alloy	Coating
24	Motor	-	
25	Motor block	Aluminum alloy	Coating
26	Hub	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{2 7}$	Spider	Urethane	
$\mathbf{2 8}$	Guide attachment	Aluminum alloy	Anodized
$\mathbf{2 9}$	Guide rod	Carbon steel	
$\mathbf{3 0}$	Plate	Aluminum alloy	Anodized
$\mathbf{3 1}$	Plate mounting cap screw	Carbon steel	Nickel plating
$\mathbf{3 2}$	Guide cap screw	Carbon steel	Nickel plating
$\mathbf{3 3}$	Sliding bearing	Bearing alloy	
$\mathbf{3 4}$	Felt	Felt	
$\mathbf{3 5}$	Holder	Synthetic resin	
$\mathbf{3 6}$	Retaining ring	Steel for spring	Phosphate coating
$\mathbf{3 7}$	Ball bushing	-	
$\mathbf{3 8}$	Spacer	Aluminum alloy	Chromating

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
$\mathbf{3 2}$	LEYG-S032

Replacement Parts/Belt

Size	Order no.
25	LE-D-2-2
32	LE-D-2-4

* Two body mounting screws are included with the support block

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

LEYG Series

AC Servo Motor

Dimensions: Top Side Parallel Motor

LEYG $\square \mathrm{M}$, LEYG $\square \mathrm{L}$ Common

Size	Stroke range	A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
25	30 to 35	141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5
	40 to 100			67.5																	
	105 to 120	166.5	141																		
	125 to 200			84.5																	
	205 to 300			102																	
32	30 to 35	1605	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6 x 1.0	10	8.5
	40 to 100	. 5	130	68																	
	105 to 120	190.5	160																		
	125 to 200			85																	
	205 to 300			102																	
Size	Stroke range	OA	OB	P	Q	S	T	U	V	WA	WB	WC	X	XA	XB	Y	Z				
	30 to 35	M6x 1.0	12	80	18	30	95	6.8	40	35	26	70	54	4	5	26.5	8.5				
	40 to 100									50	335										
25	105 to 120											95									
	125 to 200									70	43.5										
	205 to 300									85	51										
32	30 to 35	M6x 1.0	12	95	28	40	117	7.3	60	40	28.5	75	64	5	6	34	8.5				
	40 to 100									50	33.5										
	105 to 120											105									
	125 to 200									70	43.5										
	205 to 300									85	51										
Size	Incremental encoder [S2/S3]						Absolute encoder [T6/T7]														
	Without lock		With lock				Without lock			With lock											
	VA ${ }^{\text {VB }}$	VC	VA	VB		C	VA	VB	VC	VA	VB										
25	12087	14.1	156.9	123.9		5.8	115.4	82.4	14.1	156	123										
32	128.2 88.2	17.1	156.8	116.8		17.1	116.6	76.6	17.1	153.4	113.4										

LEYG \square M, LEYG \square L Common

Size	Stroke range	B	C	DA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC	
25	30 to 35	136.5	50	20	85	103	52.3	11	14.5	12.5	5.4	40.3	53.3	30.8	29	M5 0.8	6.5	
	40 to 100		67.5															
	105 to 120	161.5																
	125 to 200		84.5															
	205 to 300		102															
32	30 to 35	156	55	25	101	123	63.8	12	18.5	16.5	5.4	50.3	68.3	38.3	30	M6x 1.0	8.5	
	40 to 100		68															
	105 to 120	186																
	125 to 200		85															
	205 to 300		102															
Size	Stroke range	OA	OB	P	Q	S	T	U	V	WA	WB	WC	X	XA	XB	YD	Z	
25	30 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	80	18	30	95	6.8	40	35	26	70	54	4	5	47	8.5	
	40 to 100									50	33.5							
	105 to 120											95						
	125 to 200									70	43.5							
	205 to 300									85	51							
32	30 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	95	28	40	117	7.3	60	40	28.5	75	64	5	6	60	8.5	
	40 to 100									50	33.5	75						
	105 to 120											105						
	125 to 200									70	43.5							
	205 to 300									85	51							
Size	Stroke range	Incremental encoder [S2/S3]							Absolute encoder [T6/T7]									
			ithout			With	lock		Without lock			With lock						
		A	VB	VC	A		B	VC	A	VB	VC	A	VB	VC				
25	30 to 100	249	87	14.6	285.9	123.9		16.3	244.4	82.4	14.6	285	123	16.3				
25	105 to 300	274			310.9			269.4	310									
32	30 to 100	274.7	88.2	17.1	303.3	116.8			17.1	263.1	76.6	17.1	299.9	113.4	17.1			
	105 to 300	304.7			333.3			293.1		329.9								

LEYG Series

AC Servo Motor

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

025	For size 25
032	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	Up to 100	85	5.4	40.3	M6x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	Up to 100	101	(5.4)	(50.3)	M6x 1.0	12	22	75	64
		105 to 300							105	

[^12]
Guide Rod Type
 LEYG Series Leyg25, 32

How to Order

2 Size
25
32

3 Bearing type
\mathbf{M}
L
Sliding bearing

4 Motor mounting position

NiI	Top side parallel
D	In-line

5 Motor type

Symbol	Type	Output [W]	$\begin{gathered} \mathbf{2} \\ \text { Size } \end{gathered}$	(12) Driver type	Compatible drivers
V6*1	AC servo motor (Absolute encoder)	100	25	M2	LECYM2-V5
				U2	LECYU2-V5
V7		200	32	M2	LECYM2-V7
				U2	LECYU2-V7

*1 For motor type V6, the compatible driver part number suffix is V5.
6 Lead [mm]

Symbol	LEYG25	LEYG32*1
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

*1 The values shown in () are the leads for the top side parallel motor type. (Equivalent leads which include the pulley ratio [1.25:1])

7 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* For details, refer to the applicable stroke table below.
* There is a limit for mounting the size 32 top side parallel motor type and strokes of 50 mm or less. Refer to the dimensions.

8 Motor option

Nil	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top side parallel motor type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

Guide option

Nil	Without option
F	With grease retaining function

* Only available for the sliding bearing
(10) Cable type* ${ }^{*}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

*1 A motor cable and encoder cable are included with the product.
The motor cable for lock option is included when the motor with lock option is selected.
(11) Cable length [m$]^{* 1}$

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

Applicable Stroke Table
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Model } & \begin{array}{c}\text { Stroke } \\ \text { [mm] }\end{array} & \mathbf{3 0} & \mathbf{5 0} & \mathbf{1 0 0} & \mathbf{1 5 0} & \mathbf{2 0 0} & \mathbf{2 5 0} & \mathbf{3 0 0}\end{array} \begin{array}{c}\text { Manufacturable } \\ \text { stroke range }\end{array}\right]$

[^13]
12 Driver type

	Compatible drivers	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.

(13) IO cable length [m] ${ }^{*}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected
Refer to page 1135 if an I/O cable is required.
(Options are shown on page 1135.)

Use of auto switches for the guide rod type LEYG series
Auto switches must be inserted from the front side with the rod (plate) sticking out.
Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
Please contact SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

Compatible Drivers

Driver type	MMECHATROLINK-II type	MMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	1128	

LEYG Series

Specifications

Model			 LEYG25M ${ }^{\text {D }}$ 66（In－line）			LEYG32 ${ }^{\text {M }}$ V7（Parallel）			LEYG32 ${ }_{\text {M }}$ DV7（In－line）		
	Work load［kg］	Horizonta＊＊	18	50	50	30	60	60	30	60	60
	Work load［kg］	Vertical	7	15	29	7	17	35	10	22	44
	Force［ N ］${ }^{2}$（Set value： 45 to 90\％）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
			900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／	$[\mathrm{s}]^{* 3}$	35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s²］			5000		5000± 0.02					
	Positioning repeatability［mm］	Basic type	± 0.02			$\pm 0.02$$\pm 0.01$					
		Highprececisiontype	± 0.01								
	st motion［mm］	Basic type	0.1 or less			0.1 or less					
		Highrpecisiontype	0.05 or less			0.05 or less					
	Lead［mm］（including pulley ratio）		12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{* 4}$		50／20			50／20					
			Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw		
	Guide type		Sliding bearing（LEYG \square M），Ball bushing bearing（LEYGロL）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Enclosure		IP40								
	Required conditions for the	Horizontal	Not required			Not required					
	regenerative resistor ${ }^{\text {＊}}$［kg］	Vertical	5 or more			2 or more					
${ }^{\circ}$ Q Motor output／Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
遃	Motor type		AC servo motor（200 VAC）			AC servo motor（200 VAC）					
	Encoder		Absolute 20－bit encoder（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）								
	$\stackrel{\square}{5}$ Power［W］＊＊		Max．power 445			Max．power 724			Max．power 724		
			Non－magnetizing lock			Non－magnetizing lock					
			131	255	485	157	308	588	197	385	736
旁家 Power at $20^{\circ} \mathrm{C}$［W］			5.5			6			6		
\％			24 VDC ${ }^{+10 \%}$								

＊1 This is the max．value of the horizontal work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load changes according to the condition of the external guide． Confirm the load using the actual device．
＊2 The force setting range（set values for the driver）for the force control with the torque control mode
Set it while referencing the＂Force Conversion Graph＂on page 530
＊3 The allowable collision speed for collision with the workpiece with the torque control mode
＊4 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）

Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊5 The work load conditions which require the regenerative resistor when operating at the max．speed（Duty ratio：100\％）．
Order the regenerative resistor separately．For details，refer to the
＂Required Conditions for the Regenerative Resistor（Guide）＂on page 529.
＊6 Indicates the max．power during operation（including the driver）
When selecting the power supply capacity，refer to the power supply capacity in the operation manual of each driver．
＊7 Only when motor option＂With lock＂is selected

Weight

Product Weight：Top Side Parallel Motor Type

Series	LEYG25MV6							LEYG32MV7						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.1	3.4	4.0	4.7	5.3	5.7	6.2
Series	LEYG25LV6							LEYG32LV7						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	2.9	3.2	3.4	3.1	3.4	3.8	4.5	5.0	5.5	5.9

Product Weight：In－line Motor Type

Series	LEYG25MDV6							LEYG32MDV7						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	1.9	2.2	2.6	3.0	3.3	3.6	3.2	3.4	4.0	4.7	5.3	5.8	6.2
Series	LEYG25LDV6							LEYG32LDV7						
Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
Weight［kg］	1.7	2.0	2.2	2.6	2.9	3.2	3.4	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight
Size 25 $\mathbf{k g}]$Lock

Size	$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.3	0.6

Construction
Motor mounting position: Top side parallel motor type

LEYG \square M

LEYG $\square \mathbf{L}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	-	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 5}$	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	Synthetic resin	Stroke 101 mm or more
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	

Support Block

Size	Order no.
$\mathbf{2 5}$	LEYG-S025
$\mathbf{3 2}$	LEYG-S032

* Two body mounting screws are included with the support block.

No.	Description	Material	Note
19	Motor pulley	Aluminum alloy	
20	Belt	-	
21	Seal	NBR	
22	Retaining ring	Steel for spring	Phosphate coating
23	Motor adapter	Aluminum alloy	Coating
24	Motor	-	
25	Motor block	Aluminum alloy	Coating
26	Hub	Aluminum alloy	
27	Spider	Urethane	Spider
28	Guide attachment	Aluminum alloy	Anodized
29	Guide rod	Carbon steel	
30	Plate	Aluminum alloy	Anodized
31	Plate mounting cap screw	Carbon steel	Nickel plating
32	Guide cap screw	Carbon steel	Nickel plating
33	Sliding bearing	Bearing alloy	
34	Retaining ring	Steel for spring	Phosphate coating
35	Ball bushing	-	

Replacement Parts/Belt

Size	Order no.
$\mathbf{2 5}$	LE-D-2-2
$\mathbf{3 2}$	LE-D-2-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
Guide rod	GR-S-020 $(20 \mathrm{~g})$

LEYG Series

*1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
2 The Z-phase first detecting position from the stroke end of the motor side
*3 Through holes cannot be used for size 32 with strokes of 50 mm or less.

LEYG $\square \mathrm{L}$ (Ball bushing bearing) [mm]

Size	Stroke range	L	DB
$\mathbf{2 5}$	30 to 110	91	
	115 to 190	115	10
	195 to 300	133	
$\mathbf{3 2}$	30 to 110	97.5	13
	115 to 190	116.5	
	195 to 300	134	

Section Y details

LEYG $\square \mathbf{M}$ (Sliding bearing) [mm]

Size	Stroke range	\mathbf{L}	DB
$\mathbf{2 5}$	30 to 55	67.5	
	60 to 185	100.5	12
	190 to 300	138	
$\mathbf{3 2}$	30 to 50	74	
	55 to 180	107	16
	185 to 300	144	

LEYG \square M, LEYG \square L Common
[mm]

Size	Stroke range		A	B	C	DA	EA	EB	EH	EV	FA	FB	FC	G	GA	H	J	K	M	NA	NB	NC
25	30 to	35	141.5	116	50	20	46	85	103	52.3	11	14.5	12.5	5.4	40.3	98.8	30.8	29	34	M5 x 0.8	8	6.5
	40 to	100			67.5																	
	105 to	120	166.5	141																		
	125 to	200			84.5																	
	205 to	300			102																	
32	30 to	35	160.5	130	55	25	60	101	123	63.8	12	18.5	16.5	5.4	50.3	125.3	38.3	30	40	M6x 1.0	10	8.5
	40 to	100			68																	
	105 to	120	190.5	160																		
	125 to	200			85																	
	205 to	300			102																	
Size	Stroke	range	OA	OB	P	Q	S	T	U	V	WA	WB	WC	X	XA	XB	Y	Z				
25	30 to	35	M6x 1.0	12	80	18	30	95	6.8	40	35	26	70	54	4	5	26.5	8.5				
	40 to	100									50	33.5										
	105 to	120											95									
	125 to	200									70	43.5										
	205 to	300									85	51										
32	30 to	35	M6x 1.0	12	95	28	40	117	7.3	60	40	28.5	75	64	5	6	34	8.5				
	40 to	100									50	33.5										
	105 to	120											105									
	125 to	200									70	43.5										
	205 to	300									85	51										
Size	Without lock			With lock																		
	VA	VB	VC	VA	VB	VC																
25	115.5	82.5	11	160.5	127.5		1															
32	120	80	14	160	120		4															

Guide Rod Type LEYG Series
 AC Servo Motor

Dimensions: In-line Motor

LEYG \square M, LEYG \square L Common

Size	Stroke range	B	C	DA	EB		EH	EV	FA	FB	FC	G	GA	H	J	K	NA	NC	
25	30 to 35	136.5	50	20				52.3	11	14.5	12.5	5.4	40.3	53.3	30.8	29	M5 $\times 0.8$	6.5	
	40 to 100		67.5																
	105 to 120	161.5																	
	125 to 200		84.5																
	205 to 300		102			85	103												
32	30 to 35	156	55	25	101		123	63.8	12	18.5	16.5	5.4	50.3	68.3	38.3	30	M6 x 1.0	8.5	
	40 to 100		68																
	105 to 120	186																	
	125 to 200		85																
	205 to 300		102																
Size	Stroke range	OA	OB	P	Q		S	T	U	V	WA	WB	WC	X	XA	XB	YD	Z	
	30 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	80	18		30	95	6.8	40	35	26	70	54	4	5	47	8.5	
	40 to 100						50				33.5	70							
25	105 to 120											95							
	125 to 200						70				43.5								
	205 to 300						85				51								
32	30 to 35	$\begin{gathered} \text { M6 x } \\ 1.0 \end{gathered}$	12	95	28			40	117	7.3	60	40	28.5		64	5	6	60	8.5
	40 to 100											50	33.5	75					
	105 to 120					8								105					
	125 to 200											70	43.5						
	205 to 300						85					51							
Size	Stroke range	Without lock				With lock													
		A	VB		C	A		VB	VC										
25	30 to 100	255.5	82.5	11.5		300.5		127.5	11.5										
25	105 to 300	280.5				325.5													
32	30 to 100	266.5	80	14		306.5		120	14										
	105 to 300	296.5				336.5													

LEYG Series

Support Block

- Guide for support block application

When the stroke exceeds 100 mm and the mounting orientation is horizontal, the body will be bent. Mounting the support block is recommended. (Please order it separately from the models shown below.)

Support Block Model

LEYG-S025

- Size

$\mathbf{0 2 5}$	For size 25
$\mathbf{0 3 2}$	For size 32

\triangle Caution

Do not install the body using only a support block.
The support block should be used only for support.

Size	Model	Stroke range	EB	G	GA	OA	OB	ST	WC	X
25	LEYG-S025	30 to 100	85	5.4	40.3	M6 x 1.0	12	20	70	54
		105 to 300							95	
32	LEYG-S032	30 to 100	101	5.4	50.3	M6 x 1.0	12	22	75	64
		105 to 300							105	

[^14]
LEY/LEYG Series Specific Product Precautions 1

\triangle
Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Design / Selection

\triangle Warning

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable lateral load on the rod end. If a load in excess of the specification limits is applied to the piston rod, the generation of play in the piston rod sliding parts, reduced accuracy, etc., may occur and adversely affect the operation and service life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
Failure to do so may result in a malfunction.
3. When used as a stopper, select the LEYG series "Sliding bearing" for strokes of $\mathbf{3 0} \mathbf{~ m m}$ or less.
4. When used as a stopper, fix the main body with a guide attachment ("Top mounting" or "Bottom mounting").
If the end of the actuator is used to fix the main body (end mounting), the excessive load acts on the actuator, which may adversely affect the operation and service life of the product.

Handling

© Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range of the step data [In position], the INP output signal will turn ON. Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the step data [Trigger LV], the INP output signal will turn ON.
Use the product within the specified range of the [Pushing force] and [Trigger LV].
a) To ensure that the actuator pushes the workpieces with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
b) When the [Pushing force] and the [Trigger LV] are set below the specified range, the INP output signal will turn ON from the pushing start position.
<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY16 \square E	A/B/C	21 to 50	45 to 65%
LEY25 \square E	A/B/C	21 to 35	40 to 50%
LEY32 \square E	A	24 to 30	50 to 70%
	B/C	21 to 30	
LEY40 \square E	A	24 to 30	
	B/C	21 to 30	

Handling

\triangle Caution

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mms]	Pushing force (Setting input value)	Model	Lead	Pushing speed [mms]	Pushing force (Setting innut value)
LEY $\square 16 \square$	A/B/C	21 to 50	60 to 85\%	LEYロ16■A	A/B/C	21 to 50	80 to 95%
LEY $\square 25 \square$	A/B/C	21 to 35	50 to 65\%	LEY ${ }^{\text {25 }}$ ¢	A/B/C	21 to 35	80 to 95\%
LEY $\square 32 \square$	A	24 to 30	60 to 85\%				
	B/C	21 to 30					
LEY $\square 40 \square$	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation). If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY16■E			LEY25 \square E			LEY32 \square E			LEY40口E		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	65\%			50\%			70\%			65\%		

Model	LEY16■			LEY25 \square			LEY32 \square			LEY40 \square		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28
Pushing force	85\%			65\%			85\%			65\%		
Model	LEY16 \square A			LEY25■A								
Lead	A	B	C	A	B	C						
Work load [kg]	1	1.5	3	1.2	2.5	5						
Pushing force	95\%			95\%								

Model	LEYG16 ${ }_{\text {L }} \square$			LEYG25 ${ }_{L}^{\text {L }} \square$			LEYG32 ${ }_{L}^{\text {L }}$ -			LEYG40 ${ }_{\text {L }} \square$		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	0.5	1	2.5	1.5	4	9	2.5	7	16	5	12	26
Pushing force	85\%			65\%			85\%			65\%		

Model	LEYG16M \square A			LEYG25M \square A			
Lead	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	0.5	1	2.5	0.5	1.5	4	
Pushing force	95%			95%			

2. To conduct a pushing operation, be sure to set the product to [Pushing operation].
Also, refrain from bumping the workpiece during a positioning operation or when in the range of the positioning operation. Failure to do so may result in a malfunction.
3. Use the product within the specified pushing speed range for the pushing operation.
Failure to do so may result in damage or malfunction.
4. The moving force should be the initial value (LEY16 $\square / 25 \square / 32 \square / 40 \square$: 100\%, LEY16A \square : 150\%, and LEY25A \square : 200\%).
If the moving force is set below the initial value, it may cause the generation of an alarm.

LEY/LEYG Series Specific Product Precautions 2

\triangle
Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Handling

\triangle Caution

5. The actual speed of this actuator is affected by the load.

Check the model selection section of the catalog.
6. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on the detected motor torque.
7. For pushing operations, set the product to a position at least 2 mm away from a workpiece. (This position is referred to as the pushing start position.)
The following alarms may be generated and operation may become unstable if setting is not done correctly.

a. "Posn failed"

The product cannot reach the pushing start position due to variations in the target positions.
b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.
8. Do not scratch or dent the sliding parts of the piston rod by bumping them or placing objects on them.
The piston rod and guide rod are manufactured to precise tolerances, so even a slight deformation may result in a malfunction.
9. When an external guide is used, connect it in such a way that no impact or load is applied to it.
Use a freely moving connector (such as a floating joint).
10. Do not operate by fixing the piston rod and moving the actuator body.
Excessive load will be applied to the piston rod, resulting in damage to the actuator and a reduced service life of the product.
11. When an actuator is operated with one end fixed and the other free (ends tapped or flange), a bending moment may act on the actuator due to vibration generated at the stroke end, which can damage the actuator. In such cases, install a mounting bracket to suppress the vibration of the actuator body or reduce the speed so that the actuator does not vibrate at the stroke end.

Also, use a mounting bracket when moving the actuator body or when a long stroke actuator is mounted horizontally and fixed at one end.
12. Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the nonrotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.
Refer to the table below for the approximate values of the allowable range of rotational torque.

Allowable rotational	LEY16 \square	LEY25 \square	LEY32/40 ${ }^{\text {a }}$	LEY63	LEY100
torque [$\mathrm{N} \cdot \mathrm{m}$] or less	0.8	1.1	1.4	2.8	4.6

When screwing a bracket or nut into the piston rod end, hold the flats of the end of the "socket" with a wrench (the piston rod should be fully retracted). Do not apply tightening torque to the non-rotating mechanism.

13. When rotational torque is applied to the end of the plate, use it within the allowable range. [LEYG series]
Failure to do so may result in the deformation of the guide rod and bushing, play in the guide, or an increase in the sliding resistance.
14. For pushing operations, use the product within the duty ratio range below.
The duty ratio is a ratio of the operation time in one cycle.

- Battery-less absolute (Step motor 24 VDC)

LEY16■E

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{3 0} \mathbf{C}$ or less	65 or less	100	No restriction
$\mathbf{4 0} \mathbf{0 0}^{\circ} \mathbf{C}$	40 or less	100	No restriction
	50	30	45 or less
	60	18	15 or less
	65	15	10 or less

LEY25 \quad E

Ambient temperature	Pushing force set value $[\%]$	Duty ratio $[\%]$	Continuous pushing time [min]
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	50 or less	100	No restriction

LEY32 ${ }^{\text {E }}$

Ambient temperature	Pushing force set value $[\%]$	Duty ratio $[\%]$	Continuous pushing time $[$ min $]$
$\mathbf{4 0 ^ { \circ } \mathbf { C } \text { or less }}$	70 or less	100	No restriction

LEY40E

Ambient temperature	Pushing force set value [\%]	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{4 0 ^ { \circ } \mathbf { C } \text { or less }}$	65 or less	100	No restriction

LEY/LEYG Series Specific Product Precautions 3

\triangle
Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Handling

\triangle Caution

- Incremental (Step motor 24 VDC)

LEY16 \square

$\left.$| Pushing
 force [\%] | Ambient temperature: $25^{\circ} \mathrm{C}$ or less | Ambient temperature: $40^{\circ} \mathrm{C}$
 Duty ratio
 [\%] | | Continuous pushing
 time [min] |
| :---: | :---: | :---: | :---: | :---: | | Duty ratio |
| :---: |
| [\%] |\quad| Continuous pushing |
| :---: |
| time [min] | \right\rvert\,

LEY25 $\square / 40$

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [min]	Duty ratio [\%]	Continuous pushing time [min]
65 or less	100	-	100	No restriction

LEY32 \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less Duty ratio [\%]	Continuous pushing time [min]	Ambient temperature: $40^{\circ} \mathrm{C}$ 65 or less ratio [\%]	Continuous pushing time [min]
	100	-	100	No restriction
	100	50	15 or less	

- Incremental (Servo motor 24 VDC)

LEY16A \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less		Ambient temperature: $40^{\circ} \mathrm{C}$	
	Duty ratio [\%]	Continuous pushing time [min]	Duty ratio [\%]	Continuous pushing time [min]
95 or less	100	-	100	No restriction

LEY25A \square

Pushing force [\%]	Ambient temperature: $25^{\circ} \mathrm{C}$ or less Auty ratio [\%]	Ambient temperature: $40^{\circ} \mathrm{C}$ Continuous pushing time $[\mathrm{min}]$	Duty ratio $[\%]$	Continuous pushing time [min]
	100	-	100	No restriction

15. When mounting the product, secure a space of 40 mm or more to allow for bends in the cable.

* Failure to do so may result in cable breakage.

16. When mounting a bolt, workpiece, or attachment, hold the flats of the piston rod end with a wrench so that the piston rod does not rotate. The bolt should be tightened within the specified torque range.
Failure to do so may result in abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.
17. When mounting the product and/or a workpiece, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.
<LEY series>
Workpiece fixed/Rod end female thread

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$	End socket width across flats $[\mathrm{mm}]$
LEY16	$\mathrm{M} 5 \times 0.8$	3.0	10	14
LEY25	$\mathrm{M} 8 \times 1.25$	12.5	13	17
LEY32/40	$\mathrm{M} 8 \times 1.25$	12.5	13	22
LEY63	$\mathrm{M} 16 \times 2$	106	21	36
LEY100	$\mathrm{M} 20 \times 2.5$	204	27	27

Workpiece fixed/Rod end male thread (When "Rod end male thread" is selected)
 screw-in depth

Model	Thread size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Effective thread length $[\mathrm{mm}]$	End socket width across flats [mm]
LEY16	M8×1.25	12.5	12	14
LEY25	M14 $\times 1.5$	65.0	20.5	17
LEY32/40	M14 $\times 1.5$	65.0	20.5	22
LEY63	M18 x 1.5	97.0	26	36
Model	Rod end nut		Endbacket screw.indephth[mm]	
	Wiithacosss las [mm]	Length [mm]		
LEY16	13	5	5 or more	
LEY25	22	8	8 or more	
LEY32/40	22	8	8 or more	
LEY63	27	11	18	

Body fixed/Body bottom tapped type (When "Body bottom tapped" is selected)

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in desth $[\mathrm{mm}]$
LEY16	$\mathrm{M} 4 \times 0.7$	1.5	5.5
LEY25	$\mathrm{M} 5 \times 0.8$	3.0	6.5
LEY32/40	$\mathrm{M} 6 \times 1.0$	5.2	8.8
LEY63	$\mathrm{M} 8 \times 1.25$	12.5	10
LEY100	$\mathrm{M} 10 \times 1.5$	24.5	17

Body fixed/Rod side/Head side tapped type

<LEYG series>

Workpiece fixed/Plate tapped type

-	Model	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	Max. screw-in depth $[m m]$
\bigcirc	LEYG16 ${ }^{\text {M }}$	M5 x 0.8	3.0	8
- U	LEYG25 ${ }_{\text {L }}$	M6 x 1.0	5.2	11
	LEYG ${ }_{40 \mathrm{~L}}^{32 \mathrm{M}}$	M6 x 1.0	5.2	12

LEY/LEYG Series

\triangleSpecific Product Precautions 4
Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Handling

\triangle Caution

Body fixed/Top mounting

Model	Screw size	Max. tightening torque [N.m]	Length: L $[\mathrm{mm}]$
LEYG16L $_{\mathrm{M}} \mathrm{M} 4 \times 0.7$	1.5	32	
LEYG25M $^{\mathrm{M}}$	$\mathrm{M} 5 \times 0.8$	3.0	40.3
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 5 \times 0.8$	3.0	50.3

Body fixed/Bottom mounting

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	axx. screw-in depth $[\mathrm{mm}]$
LEYG16L $^{\mathrm{M} 5 \times 0.8}$	3.0	10	
LEYG25 $_{\mathrm{L}}^{\mathrm{M}}$	$\mathrm{M} 6 \times 1.0$	5.2	12
LEYG $_{40 \mathrm{~L}}^{32 \mathrm{~L}}$	$\mathrm{M} 6 \times 1.0$	5.2	12

Body fixed/Head side tapped type

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	Max. screw-in depth $[\mathrm{mm}]$
LEYG16M	$\mathrm{M} 4 \times 0.7$	1.5	7
LEYG25	$\mathrm{M} 5 \times 0.8$	3.0	8
LEYG	$\mathbf{4 0 L}$	$\mathrm{M} 6 \times 1.0$	5.2
10			

18. Keep the flatness of the mounting surface within the following ranges when mounting the actuator body and workpiece.

Mounting the product on an uneven workpiece or base may result in an increase in the sliding resistance.

Model	Mounting position	Flatness
LEY \square	Body/Body bottom	0.1 mm or less
LEYG \square	Top mounting/Bottom mounting	$\begin{aligned} & 0.02 \mathrm{~mm} \\ & \text { or less } \end{aligned}$
	Workpiece/Plate mounting	$\begin{aligned} & 0.02 \mathrm{~mm} \\ & \text { or less } \end{aligned}$

19. When using auto switches with the guide rod type LEYG series, the following limits apply. Please consider the following before selecting the product.

- Auto switches must be inserted from the front side with the rod (plate) sticking out.
- Auto switches with perpendicular electrical entries cannot be used.
- Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
- Please contact SMC when using auto switches on the side of the rod that sticks out.
Handling

\triangle Caution

20. When using the product with the IP65 or equivalent specifications, be sure to mount the tubing to the vent hole, and then place the end of the tubing in an area where it is not exposed to dust or water. When the actuator is used without mounting the fitting and tubing to the vent hole, water or dust may enter the inside of the actuator, resulting in a malfunction.
21. When fluctuations in the load are caused during operation, malfunction, noise, or alarm generation may occur. (In the case of the AC servo motor)
The gain tuning may not be suitable for fluctuating loads.
Adjust the gain properly by following the instructions in the driver manual.

Enclosure

- First Digit: Degree of protection against solid foreign objects

$\mathbf{0}$	Not protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{~mm} \varnothing$ and larger
$\mathbf{2}$	Protected against solid foreign objects of $12 \mathrm{mmø}$ and larger
$\mathbf{3}$	Protected against solid foreign objects of 2.5 mm and larger
$\mathbf{4}$	Protected against solid foreign objects of 1.0 mm and larger
$\mathbf{5}$	Dust protected
$\mathbf{6}$	Dust-tight

- Second Digit: Degree of protection against water

$\mathbf{0}$	Not protected	-
$\mathbf{1}$	Protected against vertically falling water droplets	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure is tilted up to 60°	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) Degrees of protection

Degrees of protection			Details
IP65	Solid foriein objects	Dust-tight	Dust particles are prevented from entering the device.
	Entry of water	Water-jetproof*1	The direct application of water jets to the device from any direction will not cause any damage.
IP67	Soid forieign objects	Dust-tight	Dust particles are prevented from entering the device.
	Entry of water	Immersible*1	The amount of water that enters the device when the actuator (in the stopped state) is submersed in up to 1 m of water for up to 30 mins will not cause any damage.

*1 Be sure to take appropriate protective measures if the product is to be used in an environment where it will be constantly exposed to water or fluids other than water splash
In particular, the product cannot be used in environments where oils, such as cutting oil or cutting fluid, are present.

LEY/LEYG Series Specific Product Precautions 5

Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Maintenance

\triangle Warning

1. Ensure that the power supply is stopped and the workpiece is removed before starting maintenance work or replacing the product.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months/ $250 \mathrm{~km} / 5$ million cycles*1	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt is partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

LEY/LEYG Series Battery-less Absolute Encoder Type Specific Product Precautions

\triangle

Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

\triangle Caution

1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.
When an electric actuator is connected and the power is turned ON for the first time after purchase*1

- When the actuator or motor is replaced
- When the controller is replaced
*1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.
"ID mismatch error"
Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed					
	Encoder ID no. (* Numbers below are examples.)				
Actuator	17623	17623	17623	17623	
Controller	17623	17699	17699	17623	
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No		

The ID number is automatically checked when the control power supply is turned ON.
An error is output if the ID number does not match.
2. In environments where strong magnetic fields are present, use may be limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur.
Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.

An air cylinder with an auto switch cannot be installed in the shaded area.

- When lining up actuators

SMC actuators can be used with their motors adjacent to each other. However, for actuators with a built-in auto switch magnet, maintain a space of 40 mm or more between the motors and the position where the magnet passes.
For the LEY series, the magnet is in the piston portion. (Refer to the construction drawings in the catalog for details.)

0
Can be used with their motors
adjacent to each other

xDo not allow the motors to be in close proximity to the position where the magnet passes.

Electric actuator built-in

Electric actuator built-in magnet portion (Table unit)
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder. The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions

[^0]: | Ambient temperature Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
 | :--- | :--- | :--- | :--- | $40^{\circ} \mathrm{C}$ or less $\quad 65$ or less

 100 No restriction

[^1]: * Refer to pages 499 and 500 for details on the rod end nut and mounting bracket.
 * Refer to the "Handling" precautions on pages 574 to 577 when mounting end brackets such as knuckle joint or workpieces.

[^2]: Material: Carbon steel (Chromating)

[^3]: * Please contact SMC for non-standard strokes as they are produced as special orders.

[^4]: * When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

[^5]: Material: Cast iron (Coating)

 * The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

[^6]: *1 The dimension in the figure is the first Z-phase detecting position.

[^7]: * Please contact SMC for non-standard strokes as they are produced as special orders.

 489

[^8]: *1 When ordering foot brackets, order 2 pieces per actuator.

[^9]: | Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
 | :--- | :---: | :---: | :---: |
 | $\mathbf{4 0} \mathbf{C}$ or less | 65 or less | 100 | No restriction |

[^10]: Use of auto switches for the guide rod type LEYG series
 Auto switches must be inserted from the front side with the rod (plate) sticking out.
 Auto switches cannot be fixed with the parts hidden behind the guide attachment (the side of the rod that sticks out).
 Please contact SMC when using auto switches on the side of the rod that sticks out, as it is produced as a special order.

[^11]: * Please contact SMC for non-standard strokes as they are produced as special orders.

[^12]: * Two body mounting screws are included with the support block.
 * The through holes of the LEYG-S032 cannot be used for the top side parallel motor type. Use taps on the bottom.

[^13]: * Please contact SMC for non-standard strokes as they are produced as special orders.

[^14]: * Two body mounting screws are included with the support block.
 * The through holes of the LEYG-S032 cannot be used for the top side parallel motor type. Use taps on the bottom.

