Size: 8, 16, 25

Battery-less Absolute (Step Motor 24 VDC)

Incremental (Step Motor 24 VDC)

-Reduced cycle time

\bullet Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

Incremental (Servo Motor 24 VDC)
-Max. pushing force: 180 N
Max. acceleration/deceleration: 5000 mm/s ${ }^{2}$ Max. speed: $\mathbf{4 0 0} \mathbf{~ m m} / \mathrm{s}$

Size* ${ }^{* 1}$ 8, 16, 25 >p. 641, 649
*1 Only size 25 is available for the battery-less absolute.

High Rigidity Type LESH $\square E / L E S H$ Series
Size ${ }^{\text {é1 }}$: 8, 16, 25 р. 687, 695
High rigidity
Deflection: $0.016 \mathrm{~mm}^{* 2}$
*2 LESH16-50 Load: 25 N

Basic type/R type
LESH $\square R$ Series

Symmetrical type/L type
LESH $\square L$ Series

In-line motor type/D type
LESH \square D Series

Restart from the last stop position is possible after recovery of the power supply.

Easy operation restart after recovery of the power supply

The position information is held by the encoder even when the power supply is turned off. A return to origin operation is not necessary when the power supply is recovered.

Does not require the use of batteries. Reduced maintenance

Batteries are not used to store the position information. Therefore, there is no need to store spare batteries or replace dead batteries.

Compact Type LES Series

Increased by up to *1 By reducing the weight of moving parts *2 Compared with the LESH16

\section*{Light weight
 Reduced by up to 29\%
 | Model | Weight [kg] |
| :---: | :---: |
| LES16D-100 | 1.20 |
| LESH16D-100 | 1.70 |
 Reduction amount
 Reduced by
 0.50 kg}

Max. pushing force: 180 N
Positioning repeatability: $\pm 0.05 \mathrm{~mm}$

- Can reduce cycle time

Max. acceleration/deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
Max. speed: $\mathbf{4 0 0 \text { mm/s }}$

- 2 types of motors selectable: Incremental (Step motor 24 VDC), Incremental (Servo motor 24 VDC)

High Rigidity Type LESH Series

Hilgh rigidity Deflection: $0.016 \mathrm{~mm}^{* 1}{ }^{* 1}$ LESH16-50 Load: 25 N

Integration of the guide rail and the table

 Uses a circulating linear guide.

Integration of the guide rail and the table

OCompact, Space-saving
For LESH8 R/L, 50 mm stroke

OReduced by 61% in volume ${ }^{* * * 2}$
*1 Compared with the LESH16-50/LXSH-50
*2 For R/L type
Motor integrated
into the body Built-in motor

Select from 2 types of motors.

- Incremental (Step motor 24 VDC) Ideal for the low-speed transfer of heavy loads and pushing operations
Olncremental (Servo motor 24 VDC) Stable at high speeds
Silent operation

Speed

Non-magnetizing lock mechanism (Option)
Prevents workpieces from dropping (Holding)

Adjustment operation is
possible when the power is OFF.

Symmetrical Type/L Type

The locations of the table and cable are opposite those of the basic type (R type), expanding design applications.

In-line Motor Type/D Type

Width dimension shortened by up to 45\%

How to Mount

Through-hole mounting
(R/L/D type)

Side holder mounting (D type)

Body tapped mounting
(R/L/D type)

Slide Table/Compact Type LES Series

Slide Table/High Rigidity Type LESH Series
Battery-less Absolute (Step Motor 24 VDC)

Incremental (Step Motor 24 VDC)/ Incremental (Servo Motor 24 VDC) Controllers

Step Data Input Type/JXC51/61 Series .. p. 1017
Step Data Input Type/LECA6 Series... p. 1031
EtherCAT/EtherNet/IPTM/PROFINET/DeviceNet ${ }^{\circledR} / I O-L i n k$
Direct Input Type/JXCE $\square / 91 / P 1 / D 1 / L \square / M 1$ Series .. p. 1063
Gateway Unit/LEC-G Series ... p. 1038
Programless Controller/LECP1 Series.. p. 1042
Step Motor Driver/LECPA Series ... p. 1057
Actuator Cable .. p. 1091
Communication Cable for Controller Setting/LEC-W2A- \square...................................... p. 1094
Teaching Box/LEC-T1 ... p. 1095
3-Axis Step Motor Controller

EtherNet/IPTM Type/JXC92 Series ... p. 1079

4-Axis Step Motor (Servo/24 VDC) Controller

Slide Tables

Compact Type LES Series

Battery-less Absolute (Step Motor 24 VDC)
p. 659

Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 669

In-line motor type (D type)

High Rigidity Type LESH Series

Battery-less Absolute (Step Motor 24 VDC)
p. 705

Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 715

Symmetrical type (L type)

In-line motor type (D type)

Slide Table/Compact Type

LES Series

Model Selection 1

LES $\square E$ Series $>$ p. 659

Selection Procedure

Step 3
Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (page 642)
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LES25 \square EJ-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2.

Method 1: Check the cycle time graph. (page 642)
 found from the following equation.

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$

Step 3 Check the allowable moment. <Static allowable moment> (page 642) <Dynamic allowable moment> (page 643)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

LES25 $\square \mathrm{E} \square /$ Battery-less Absolute Vertical

<Speed-Work load graph>

LES25/Battery-less Absolute Pitching

<Dynamic allowable moment>

Based on the above calculation result, the LES25 \square EJ-50 should be selected.

Speed-Work Load Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)

* The following graphs show the values when the moving force is 100%.

LES25 \square E \square

Cycle Time Graph (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	4.8

LES Series

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration

- $5000 \mathrm{~mm} / \mathrm{s}^{2}$

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment

Acceleration/Deceleration

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LES
Size: 25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$: a

Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq 1
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LES
Size: 25
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 2.0
Work load center position [mm]: Xc=100, Yc = 50, Zc = $\mathbf{1 0 0}$
2. Select three graphs from the top on page 643.

Mounting orientation

3. $L x=\mathbf{5 0 0} \mathbf{m m}, L y=\mathbf{2 4 0} \mathbf{m m}, L z=500 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.
$\alpha x=100 / 500=0.20$
$\alpha y=50 / 240=0.21$
$\alpha z=100 / 500=0.20$
5. $\alpha x+\alpha y+\alpha z=0.61 \leq 1$

Slide Table/Compact Type

LES Series

Model Selection 2

Selection Procedure For the high rigidity type LESH series, refer to page 691.

Check the required force.

Check the pushing force set value.

Step 3 Check the duty ratio.

Selection Example

Operating conditions

- Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 s
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-Full cycle time (B): 6 s
-Stroke: $100[\mathrm{~mm}]$	

Step 1 Check the required force.
Calculate the approximate required force for a pushing operation. Selection example) •Pushing force: 90 [N]

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 661).
Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm/s]

The LES25 \square E can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation. If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,
-LES25 $\square \mathrm{E}$ table weight: 0.5 [kg] The required force can be found to be $100+5=105[\mathrm{~N}]$.

Step 2 Check the pushing force set value.

<Pushing force set value-Force graph> (page 646)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

The LES25 \square EK can be temporarily selected as a possible candidate.
This pushing force set value is 40 [\%].

Step 3 Check the duty ratio.

Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio.
Selection example) Based on the allowable duty ratio,
-Pushing force set value: 40 [\%]
The allowable duty ratio can be found to be $30[\%]$.
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 s
-Full cycle time (B): 6 s
The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Table Weight

Model	Stroke $[\mathrm{mm}]$						
	30	50	75	100	125	150	
LES25	0.25	0.30	0.36	0.50	0.55	0.59	

* If the mounting position is vertical upward, add the table weight.

LES25 $\square \mathrm{E} \square /$ Battery-less Absolute

<Pushing force set value-Force graph>

Allowable Duty Ratio
Battery-less Absolute

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Based on the above calculation result, the LES25 \square EK-100 should be selected. For allowable moment, the selection procedure is the same as that for the positioning control.

Pushing Force Set Value-Force Graph

Battery-less Absolute (Step Motor 24 VDC)

LES25 \square E \square

Table Accuracy

Model	LES25
B side parallelism to A side	0.4 mm
B side traveling parallelism to A side	Refer to Graph 1.
C side perpendicularity to A side	0.2 mm
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$

Graph 1 B side traveling parallelism to A side

LES Series

Table Deflection (Reference Value)

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LES25

$\mathbf{L r}=100 \mathrm{~mm}$

LES Series \downarrow p. 669

Selection Procedure

For the high rigidity type LESH series, refer to page 695.

Step 3
Check the allowable speed.

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 650)
Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LES16 $\square \mathbf{J}-50$ can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2 .

Method 1: Check the cycle time graph. (Page 651)

Method 2: Calculation <Speed-Work load graph> (Page 650)	
Calculate the cycle time using the	Calculation example)
following calculation method.	T1 to T4 can be calculated as follows.
Cycle time:	
T can be found from the following equation.	$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=220 / 5000=0.04[\mathrm{~s}]$,
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$	$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=220 / 5000=0.04[\mathrm{~s}]$
- T1: Acceleration time and T3:	$T 2=\underline{L-0.5 \cdot V \cdot(T 1+T 3)}$
Deceleration time can be found by the following equation.	V
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$	220
	$=0.19$ [s]
- T2: Constant speed time can be found from the following equation.	$\mathrm{T} 4=0.15[\mathrm{~s}]$

- T4: Settling time varies depending follows.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4
$$

$$
=0.04+0.19+0.04+0.15
$$ on the conditions such as motor

$$
=0.42 \text { [s] }
$$ types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

$\mathrm{T} 4=0.15[\mathrm{~s}]$
The cycle time can be found as

Operating conditions

\bullet Workpiece mass: 1 [kg] •Workpiece mounting

- Speed: 220 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 s

LES16 \square /Step Motor Vertical

<Speed-Work load graph>

LES16 $\square /$ Step Motor

<Cycle time>
LES16/Pitching
Check the allowable moment. <Static allowable moment> (Page 651) <Dynamic allowable moment> (Pages 652, 653) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

* The following graphs show the values when moving force is 100%.

LES8 \square

Horizontal

Vertical

LES16 \square

Vertical

LES25

Vertical

Servo Motor (24 VDC)

* The following graphs show the values when moving force is 250%.

LES8 \square A

LES16 \square A

LES25 ${ }^{\text {R }}$ A

Vertical

		Lead 8: LES25 \square AK					
			1	-			
	3			Lead LES	$\begin{aligned} & \text { d16: } \\ & 25 \square A \end{aligned}$		
	1		1				
	1		1				
		100	$\begin{array}{r} 200 \\ \\ \\ \text { Spee } \end{array}$	ed [mm	$\begin{array}{ll} 00 & 400 \\ \mathrm{~m} / \mathrm{s}] \end{array}$	00	500

LES Series

Cycle Time Graph (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LES8	LES16	LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	0.8	1.8	4.8

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment
 ynamic Allowable Moment

\qquad
\square

mad overhanging direction
m: Work load [kg]
Me: Allowable moment [$\mathrm{N} \cdot \mathrm{m}$]
O \mathbf{L} : Overhang to the work load center of gravity [mm
mm]
Acceleration/Deceleration
— $5000 \mathrm{~mm} / \mathrm{s}^{2}$

Horizontal/Bottom
Horizontal/Bottom

X

$\overline{\bar{N}}$

Incremental (Step Motor 24 VDC)

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LES

Size: 8/16/25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq \mathbf{1}
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LES
Size: 8
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 0.6
Work load center position [mm]: Xc=50, Yc=30,Zc=60
2. Select three graphs from the top of the left side first row on page 652.
3. $L x=\mathbf{2 2 0} \mathbf{~ m m}, L y=\mathbf{1 3 5} \mathbf{m m}, L z=\mathbf{2 5 0} \mathbf{~ m m}$
4. The load factor for each direction can be found as follows.
$\alpha x=50 / 220=0.23$
$\alpha y=30 / 135=0.22$
$\alpha z=60 / 250=0.24$
5. $\alpha x+\alpha y+\alpha z=0.69 \leq 1$

Mounting orientation

LES Series \downarrow p. 669

Selection Procedure For the high rigidity type LESH series, refer to page 701.

Check the pushing force set value.

Selection Example

Operating conditions

$$
\begin{array}{ll}
\text {-Pushing force: } 90[\mathrm{~N}] & \text { - Mounting orientation: Vertical upward } \\
\text {-Workpiece mass: } 1[\mathrm{~kg}] & \text {-Pushing time + Operation (A): } 1.5 \mathrm{~s} \\
\text { - Speed: } 100[\mathrm{~mm} / \mathrm{s}] & \text { - Full cycle time (B): } 6 \mathrm{~s} \\
\text {-Stroke: } 100[\mathrm{~mm}] &
\end{array}
$$

Check the required force.
Calculate the approximate required force for a pushing operation.
Selection example) •Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (Pages 672, 673).
Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm / s]

The LES25 \square can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,
-LES25 \square table weight: 0.5 [kg] The required force can be found to be $100+5=105[\mathrm{~N}]$.

Step 2 Check the pushing force set value.

<Pushing force set value-Force graph> (Page 656)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

The LES25 $\square \mathbf{K}$ can be temporarily selected as a possible candidate.
This pushing force set value is 40 [\%].
Step 3 Check the duty ratio.
Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio.
Selection example) Based on the allowable duty ratio,
-Pushing force set value: 40 [\%]
The allowable duty ratio can be found to be $30[\%]$.
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 s
-Full cycle time (B): 6 s
The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Based on the above calculation result, the LES25 $\square \mathrm{K}-100$ should be selected. For allowable moment, the selection procedure is the same as that for the positioning control.

Table Weight

Model	Stroke $[\mathrm{mm}]$						
	30	50	75	100	125	150	
LES8	0.06	0.08	0.10	-	-	-	
LES16	0.10	0.13	0.18	0.20	-	-	
LES25	0.25	0.30	0.36	0.50	0.55	0.59	

* If the mounting position is vertical upward, add the table weight.

LES25 $\square /$ Step Motor

<Pushing force set value-Force graph>

Allowable Duty Ratio
Step Motor (Servo/24 VDC)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LES8 \square A is up to 75%.

Pushing Force Set Value-Force Graph

Step Motor (Servo/24 VDC)

LES8 \square

LES16 \square

LES25 \square

Servo Motor (24 VDC)

LES8 \square A

LES16 \square A

LES25 ${ }_{\text {R }}$ A

*1 Set values for the controller

Table Accuracy

Model	LES8	LES16	LES25
B side parallelism to A side	0.4 mm		
B side traveling parallelism to A side	Refer to Graph 1.		
C side perpendicularity to A side	0.2 mm		
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$		
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$		

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LES8
 $\mathrm{Lr}=80 \mathrm{~mm}$

Slide Table/Compact Type LES Series Les25

Size
25

(3) Motor type

Symbol	Type	Compatible controllers/drivers		
		JXC51	JXCP1	JXCEF
E	Battery-less absolute	JXC61	JXCD1	JXC9F
	(Step motor 24 VDC)	JXCE1	JXCL1	JXCPF
		JXC91	JXCM1	JXCLF

4 $\mathbf{L e a d}$ [mm]
\mathbf{J}
\mathbf{K}
\mathbf{K}

(5) Stroke [mm]

Stroke	Applicable stroke
$\mathbf{3 0}$ to $\mathbf{1 5 0}$	$30^{* 1}, 50,75,100,125,150$

Body option

Nil	Without option
\mathbf{S}	Dust-protected*2

For details on controllers, refer to the next page.

Mounting*3

(9) Actuator cable type/length

Robotic cable

Nil	None	R8	$8^{* 4}$
R1	1.5	RA	$10^{* 4}$
R3	3	RB	$15^{* 4}$
R5	5	RC	$20^{* 4}$

10 Controller

Interface (Communication protocol//Input/Output)

Symbol	Type	Numbero ofexes, Special specificaion	
		Standard	With STO sub-function
5	Parallel input (NPN)	\bigcirc	
6	Parallel input (PNP)	\bigcirc	
E	EtherCAT	\bigcirc	\bigcirc
9	EtherNet/IPTM	\bigcirc	\bigcirc
P	PROFINET	\bigcirc	\bigcirc
D	DeviceNet ${ }^{\text {® }}$	\bigcirc	
L	IO-Link	\bigcirc	\bigcirc
M	CC-Link	\bigcirc	

*1 As the applicable motor mounting positions and motor options vary depending on the stroke, refer to the applicable motor option chart on page 659.
*2 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*3 For details, refer to page 667.
*4 Produced upon receipt of order
*5 The DIN rail is not included. It must be ordered separately.
*6 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," " 3 ," or " 5 " for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.
Confirm that the combination of the controller and actuator is correct
<Check the following before use.>
(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

Refer to the Operation Manual for using the products.
Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//Pim direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\text {® }}$ direct input type	IO-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	$\left\lvert\, \begin{gathered} \text { Etherinetilptu direct } \\ \text { input with STO } \\ \text { sub-unction } \end{gathered}\right.$	PROFINET direct input	$\begin{array}{\|l\|} \text { PROFINET direct } \\ \text { input with STO } \\ \text { sub-function } \end{array}$	DeviceNet® ${ }^{\circledR}$ direct input	IO-Link direct input	10-Link direct input with STO sub-function	CC-Link direct inpu
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Power supply volage	24 VDC										
Reference page	1017	1063									

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

*1 Speed changes according to the work load. Check the "Speed-Work Load Graph (Guide)" on page 642.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
$* 3$ The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 A reference value for correcting errors in reciprocal operation
*5 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
$* 7$ With lock only
*8 For an actuator with lock, add the power for the lock.

Weight

Battery-less Absolute (Step Motor 24 VDC)

		Without lock						With lock					
Stroke [mm]		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES25 ${ }_{\text {R }}$	1.81	2.07	2.41	3.21	3.44	3.68	-	2.34	2.68	3.48	3.71	3.95
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
$\mathbf{9}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 0}$	Bearing stopper	Brass	Electroless nickel plating (LES25R/L 11
Monly)			
$\mathbf{1 2}$	Socket plate	Structural steel	-
$\mathbf{1 3}$	Lead screw pulley	Structural steel	Electroless nickel plating
$\mathbf{1 4}$	Motor pulley	Aluminum alloy	-
$\mathbf{1 5}$	Spacer	Stainless steel	-
$\mathbf{1 6}$	Origin stopper	Structural steel	Electroless nickel plating
$\mathbf{1 7}$	Bearing	-	-
$\mathbf{1 8}$	Belt	-	-
19	Grommet	Synthetic resin	-
$\mathbf{2 0}$	Cap	Silicone rubber	-
$\mathbf{2 1}$	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dust-protected option only
$\mathbf{2 4}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 6}$	Scraper	NBR	Dust-protected option only
$\mathbf{2 7}$	Cover	Synthetic resin	-
$\mathbf{2 8}$	Return guide	Synthetic resin	-
$\mathbf{2 9}$	Cover support	Stainless steel	-
$\mathbf{3 0}$	Steel ball	Special steel	-
$\mathbf{3 1}$	Lock	-	With lock only

Replacement Parts/Belt

Size	Order no.	Note
LES25 \square	LE-D-1-3	-

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Battery-less Absolute (Step Motor 24 VDC)

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel paling
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Stopper	Structural steel	-
$\mathbf{9}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 2}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Bearing stopper	Brass	Electroless nickel plating
		(LES25D \square only)	
$\mathbf{1 4}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 5}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 6}$	Hub (Motor side)	Aluminum alloy	-
$\mathbf{1 7}$	Spacer	Stainless steel	LES25D \square only
$\mathbf{1 8}$	Grommet	NBR	-
$\mathbf{1 9}$	Spider	NBR	-
$\mathbf{2 0}$	Cover	Synthetic resin	-

No.	Description	Material	Note
21	Return guide	Synthetic resin	-
22	Cover support	Stainless steel	-
23	Steel ball	Special steel	-
24	Bearing	-	-
25	Sim ring	Structural steel	-
26	Masking tape	-	-
27	Bushing	-	Dust-protected option only
28	Scraper	NBR	Dust-protected option only
29	Lock	-	With lock only
30	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LES25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 (10 g)
	GR-S-020 $(20 \mathrm{~g})$

Dimensions: Basic Type/R Type

LES25RE

With lock

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25RE \square-30 $\square \square \square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25RE \square-50 $\square \square \square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25RE $\square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25RE \square-100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25RE -125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25RE \square-150 $\square \square \square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

LES Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LES25LE

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES25LE \square-30 $\square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25LE \square-50 $\square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25LE \square-75 $\square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25LE \square-100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25LE \square-125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25LE \square-150 $\square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

665
SSMC

Dimensions: In-line Motor Type/D Type

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $\varnothing 5.5$.
*5 The table is lower than the motor cover.
*6 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.
*7 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions							[mm]	
Model	(L)	B	D	E	F	G	J	K
LES25DE \square-30 $\square \square-\square \square \square \square \square$	214	48	4	133.5	81	4	19	121.5
LES25DE \square-30B $\square \square-\square \square \square \square \square$	254.5							
LES25DE \square-50 $\square \square-\square \square \square \square \square$	240	42	6	159.5	87	4	39	147.5
LES25DE \square-50B $\square \square-\square \square \square \square \square$	280.5							
LES25DE \square-75 $\square \square-\square \square \square \square \square$	274	55	6	193.5	96	4	64	181.5
LES25DE \square-75B $\square \square-\square \square \square \square \square$	314.5							
LES25DE \square-100 $\square \square-\square \square \square \square \square$	347	50	8	266.5	144	4	89	254.5
LES25DE \square-100B $\square \square-\square \square \square \square \square$	387.5							
LES25DE \square-125 $\square \square-\square \square \square \square \square$	372	55	8	291.5	144	6	57	279.5
LES25DE \square-125B $\square \square-\square \square \square \square \square$	412.5							
LES25DE \square-150 $\square \square-\square \square \square \square \square$	397	62	8	316.5	144	6	69.5	304.5
LES25DE \square-150B $\square \square-\square \square \square \square \square$	437.5							

LES Series

Battery-less Absolute (Step Motor 24 VDC)

Side Holder (In-line Motor Type/D Type)

[mm]							
Part no.*1	A	B	D	E	F	G	Applicable model
LE-D-3-3	81	99	12	6.6	30	49	LES25DE

*1 Part number for 1 side holder

Slide Table

Compact Type

* For details, refer to page 1343 and onward.

LES Series LEs8, 16,25
RoHS

Communication plug connector, I/O cable*13

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable (1.5 m)	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol	Number of axes	Specification
$\mathbf{1}$	Single axis	Standard
\mathbf{F}	Single axis	With STO sub-function

$L E C \square$ Series (For delails, refer to page 671.)

10 Controller/Driver type*7

Nil	Without controller/driver	
6N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*8 (Programless type)	NPN
1P		PNP
AN	LECPA*8*9 (Pulse input type)	NPN
AP		PNP

(1) $1 / 0$ cable length ${ }^{3 / 10}$

NiI	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 11}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 11}$

(12) Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail ${ }^{* 12}$

*1 LES25DA is not available.
*2 As the applicable motor mounting positions and motor options vary depending on the stroke, refer to the applicable motor option chart on page 669.
*3 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*4 Refer to page 685 for details.
*5 Produced upon receipt of order (Robotic cable only)
*6 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to pages 1092 and 1093 if only the actuator cable is required
*7 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC/JXC series
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.

[UL-compliant products (For the LEC series)]

When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*8 Only available for the motor type "Step motor"
*9 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*10 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*11 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*12 The DIN rail is not included. It must be ordered separately.
*13 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link. Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LES Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	LECA6	LECP1	LECPA
Features	Parallel I/O	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Max. number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	1017	1031	1042	1057

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNet/IPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Step Motor（Servo／24 VDC）

Model			LES8 \square		LES16 \square		LES25 \square	
	Stroke［mm］		30，50， 75		30，50，75， 100		30，50，75，100，125， 150	
	Work load［kg］＊	Horizontal	1		3		5	
		Vertical	0.5	0.25	3	1.5	5	2.5
	Pushing force 30 to 70\％［N］＊2＊3		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］${ }^{* 1 * 3}$		10 to 200	20 to 400	10 to 200	20 to 400	10 to 200	20 to 400
	Pushing speed［mm／s］		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］＊4		0.3 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 5}$		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Enclosure		IP30					
0	Motor size		$\square 20$		$\square 28$		$\square 42$	
－0．	Motor type		Step motor（Servo／24 VDC）					
㐌：	Encoder		Incremental					
＂＇0．0	Power supply voltage［V］		24 VDC $\pm 10 \%$					
क	Power［W］＊6＊8		Max．power 35		Max．power 69		Max．power 67	
\pm	Type		Non－magnetizing lock					
戓：	Holding force［N］${ }^{\text {［7 }}$		24	2.5	300	48	500	77
	Power［W］＊8		3.5		2.9		5	
－			24 VDC $\pm 10 \%$					

＊1 Speed changes according to the work load．Check the＂Speed－Work Load Graph（Guide）＂on page 650.
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊4 A reference value for correcting errors in reciprocal operation
＊5 Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Indicates the max．power during operation（including the controller）
This value can be used for the selection of the power supply．
＊ 7 With lock only
＊8 For an actuator with lock，add the power for the lock．

LES Series

Specifications

Servo Motor (24 VDC)

Model			LES8 \square A		LES16 \square A		LES25 ${ }_{\text {R }} \mathbf{A}^{* 1}$	
	Stroke [mm]		30, 50, 75		30, 50, 75, 100		30, 50, 75, 100, 125, 150	
	Work load [kg]	Horizontal	1		3		5	
		Vertical	1	0.5	3	1.5	4	2
	Pushing force 50	to 100\% [N]*2	7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	31 to 62	19 to 38
$\underset{\sim}{0}$	Speed [mm/s]		1 to 200	1 to 400	1 to 200	1 to 400	1 to 200	1 to 400
$\stackrel{\overline{0}}{\bar{\pi}}$	Pushing speed [mm/s]		1 to 20					
$\underset{4}{\text { Oit }}$	Max. acceleration/deceleration [mm/s ${ }^{2}$]		5000					
	Positioning repeatability [mm]		± 0.05					
응	Lost motion [mm]*3		0.3 or less					
市	Screw lead [mm]		4	8	5	10	8	16
$\frac{\pi}{7}$	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 4}$		50/20					
$\overline{8}$	Actuation type		Slide screw + Belt (R/L type), Slide screw (D type)					
	Guide type		Linear guide (Circulating type)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40					
	Operating humidity range [\%RH]		90 or less (No condensation)					
	Enclosure		IP30					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor output [W]		10		30		36	
	Motor type		Servo motor (24 VDC)					
	Encoder (Angular displacement sensor)		Incremental					
	Power supply voltage [V]		24 VDC $\pm 10 \%$					
	Power [W] ${ }^{* 5 * 7}$		Max. power 71		Max. power 102		Max. power 111	
- \square_{0}^{0}	Type		Non-magnetizing lock					
E10	Holding force [N] ${ }^{*}$		24	2.5	300	48	500	77
	Power consumption [W] ${ }^{* 7}{ }^{*}$		3.5		2.9		5	
-			24 VDC $\pm 10 \%$					

*1 LES25DA is not available.
*2 The pushing force values for LES8 \square A is 50 to 75%. Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 A reference value for correcting errors in reciprocal operation
*4 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*5 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
*6 With lock only
*7 For an actuator with lock, add the power consumption for the lock.

Weight

Step Motor (Servo/24 VDC), Servo Motor (24 VDC) Common

		Without lock						With lock					
Stroke [mm]		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES8 ${ }_{\text {R }}(\mathrm{A})$	0.45	0.54	0.59	-	-	-	-	-	0.66	-	-	-
	LES16 ${ }_{\text {L }}^{\text {R }}$ (A)	0.91	1.00	1.16	1.24	-	-	-	-	1.29	1.37	-	-
	LES25 ${ }_{\text {L }}(\mathrm{A})$	1.81	2.07	2.41	3.21	3.44	3.68	-	2.34	2.68	3.48	3.71	3.95
	LES8D(A)	0.40	0.52	0.58	-	-	-	0.47	0.59	0.65	-	-	-
	LES16D(A)	0.77	0.90	1.11	1.20	-	-	0.90	1.03	1.25	1.33	-	-
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treatment + Electroless nickel plating
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Special treatment
6	End plate	Aluminum alloy	Anodized
7	Pulley cover	Synthetic resin	-
8	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
10	Bearing stopper	Brass	Electroless nickel plating (LES25R/L \square only)
11	Motor plate	Structural steel	-
12	Socket	Structural steel	Electroless nickel plating
13	Lead screw pulley	Aluminum alloy	-
14	Motor pulley	Aluminum alloy	-
15	Spacer	Stainless steel	LES25R/L \square only
16	Origin stopper	Structural steel	Electroless nickel plating
17	Bearing	-	-
18	Belt	-	-
19	Grommet	Synthetic resin	-
20	Cap	Silicone rubber	-
21	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dust-protected option only
$\mathbf{2 4}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 6}$	Scraper	NBR	Dust-protected option only
$\mathbf{2 7}$	Cover	Synthetic resin	-
$\mathbf{2 8}$	Return guide	Synthetic resin	-
$\mathbf{2 9}$	Cover support	Stainless steel	-
$\mathbf{3 0}$	Steel ball	Special steel	-
$\mathbf{3 1}$	Lock	-	With lock only

Replacement Parts/Belt

Size	Order no.	Note
LES8 \square	LE-D-1-1	Without manual override screw
LES16 \square	LE-D-1-2	-
LES25 \square	LE-D-1-3	-
LES25 \square A	LE-D-1-4	-
LES8 \square	LE-D-1-5	With manual override screw

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LES Series

Construction: In-line Motor Type/D Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreatment + Electroless nickel paling
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Stopper	Structural steel	-
$\mathbf{9}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 2}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Bearing stopper	Brass	Electroless nickel plating
		(LES25D \square only)	
$\mathbf{1 4}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 5}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 6}$	Hub (Motor side)	Aluminum alloy	-
$\mathbf{1 7}$	Spacer	Stainless steel	LES25D \square only
$\mathbf{1 8}$	Grommet	NBR	-
$\mathbf{1 9}$	Spider	NBR	-
$\mathbf{2 0}$	Cover	Synthetic resin	-

No.	Description	Material	Note
21	Return guide	Synthetic resin	-
22	Cover support	Stainless steel	-
23	Steel ball	Special steel	-
24	Bearing	-	-
25	Sim ring	Structural steel	-
26	Masking tape	-	-
27	Bushing	-	Dust-protected option only
28	Scraper	NBR	Dust-protected option only
29	Lock	-	With lock only
$\mathbf{3 0}$	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LES8D	LE-D-3-1
LES16D	LE-D-3-2
LES25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Dimensions: Basic Type/R Type

LES8R

With lock

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Connector		
Motor cable	Step motor	Servo motor
	\%	
	$\xrightarrow{20}$	$\stackrel{24}{ }$
Lock cable	鹵	\%
	15	15

Dimensions

Dimensions							[mm
Model	L	D	E	F	G	H	J
LES8R $\square \square$-30 $\square-\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8R $\square \square$-50 $\square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8R $\square \square$-75 $\square \square$ - $\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

LES Series

Dimensions: Basic Type/R Type

LES16R

With lock

Connector		
Motor cable	Step motor	Servo motor
	$\underset{\sim}{4 i}$	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable		-
	15	15

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Model	L	C	D	E	F	G	H	J
LES16R $\square \square$-30 $\square \square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16R $\square \square-50 \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16R $\square \square-75 \square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16R $\square \square-100 \square \square-\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108

Dimensions: Basic Type/R Type
LES25R

With lock

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Connector		
	Step motor	Servo motor
Motor	$\pm{ }_{4 i}$	
	20	$\xrightarrow{24}$
Lock cable		

Model	L	C	D	E	F	G	H	J
LES25R $\square \square-30 \square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25R $\square \square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25R $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25R $\square \square-100 \square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25R $\square \square-125 \square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25R $\square \square-150 \square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

LES Series

Dimensions: Symmetrical Type/L Type

LES8L

*1 This is the range within which the table can move when it returns to origin
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

	Connector	
Motor cable	Step motor	Servo motor
	\overbrace{i}^{4}	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	開	閙 ${ }^{\text {cif }}$
	15	15

Dimensions

Dimensions						[mm]	
Model	L	D	E	F	G	H	J
LES8L $\square \square$-30 \square - $\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8L $\square \square$-50 \square - $\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8L $\square \square$-75 $\square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

679

Dimensions: Symmetrical Type/L Type

LES16L

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction
Use screws that are between the maximum and minimum screw-in depths in length
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

	Connector	
	Step motor	Servo motor
Motor cable	Nit	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable		開

Dimensions

LES Series

Incremental (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LES25L

With lock

B-B

Connector		
Motor cable	Step motor	Servo motor
	\#\#	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	(芴)	雷
	15	15

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Model	L	C	D	E	F	G	H	J
LES25L $\square \square-30 \square-\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25L $\square \square-50 \square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25L $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25L $\square \square-100 \square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25L $\square \square-125 \square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25L $\square \square-150 \square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Dimensions: In-line Motor Type/D Type

A-A

* 1 section (30 st)

* 2 sections ($50,75 \mathrm{st}$)

With lock

	Connector	
Motor cable	Step motor	Servo motor
	$\sqrt{m i n}$	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock	(氤)	閏
	15	15

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $ø 5.5$.
*5 The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
*6 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*7 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Model	(L)	B	D	E	F	G	J	K
LES8D $\square \square$-30 $\square \square-\square \square \square \square \square$	171.5	26	6	88.5	44.5	2	-	81
LES8D $\square \square$-30B $\square \square-\square \square \square \square \square$	225							
LES8D $\square \square$-50 $\square \square-\square \square \square \square \square$	214.5	46	6	131.5	64.5	4	23	124
LES8D $\square \square-50 \mathrm{~B} \square \square-\square \square \square \square \square$	268							
LES8D $\square \square$-75 $\square \square-\square \square \square \square \square$	239.5	50	6	156.5	64.5	4	48	149
LES8D $\square \square$-75B $\square \square-\square \square \square \square \square$	293							

LES Series

Dimensions: In-line Motor Type/D Type

A-A

* 2 sections (30, 50, 75 st)
* 3 sections (100 st)

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable		

*1 This is the range within which the table can move when it returns to origin.
Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $ø 5.5$.
*5 The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
*6 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction
Use screws that are between the maximum and minimum screw-in depths in length.
*7 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Model	(L)	B	D	E	F	G	J	K
LES16D $\square \square-30 \square \square-\square \square \square \square \square$	193	38	4	102.5	56.5	4	18.5	95.5
	256.5							
	221	34	6	130.5	65	4	38	123.5
LES16D $\square \square-50 \mathrm{~B} \square \square-\square \square \square \square \square ~$	284.5							
	265	36	8	174	84	4	63	167.5
	328.5							
LES16D $\square \square-100 \square \square-\square \square \square \square \square$	290	36	10	199.5	84	6	44	192.5
LES16D $\square \square-100 \mathrm{~B} \square \square-\square \square \square \square \square$	353.5							

683

Dimensions: In-line Motor Type/D Type

* 2 sections (30, 50, 75, 100 st)
* 3 sections (125, 150 st)

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $\varnothing 5.5$.
*5 The table is lower than the motor cover.
*6 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.
*7 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions

Model	(L)	B	D	E	F	G	J	K
LES25D \square-30 $\square \square-\square \square \square \square \square$	214	48	4	133.5	81	4	19	121.5
LES25D \square-30B $\square \square-\square \square \square \square \square$	254.5							
LES25D \square-50 $\square \square-\square \square \square \square \square$	240	42	6	159.5	87	4	39	147.5
LES25D \square-50B $\square \square-\square \square \square \square \square$	280.5							
LES25D \square-75 $\square \square-\square \square \square \square \square$	274	55	6	193.5	96	4	64	181.5
LES25D \square-75B $\square \square-\square \square \square \square \square$	314.5							
LES25D \square-100 $\square \square-\square \square \square \square \square$	347	50	8	266.5	144	4	89	254.5
LES25D \square-100B $\square \square-\square \square \square \square \square$	387.5							
LES25D \square-125 $\square \square-\square \square \square \square \square$	372	55	8	291.5	144	6	57	279.5
LES25D \square-125B $\square \square-\square \square \square \square \square$	412.5							
LES25D \square-150 $\square \square-\square \square \square \square \square$	397	62	8	316.5	144	6	69.5	304.5
LES25D \square-150B $\square \square-\square \square \square \square \square$	437.5							

LES Series

Side Holder (In-line Motor Type/D Type)

[mm]							
Part no.*1	A	B	D	E	F	G	Applicable model
LE-D-3-1	45	57.6	6.7	4.5	20	33	LES8D
LE-D-3-2	60	74	8.3	5.5	25	40	LES16D
LE-D-3-3	81	99	12	6.6	30	49	LES25D

*1 Part numbers for 1 side holder

Selection Procedure For the compact type LES series, refer to page 641.

Step 3
Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (page 688) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESH25 \square EJ-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2.

* Although it is possible to make a suitable selection by using method 1 , this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (page 688)
 types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$
Step 3 Check the allowable moment. <Static allowable moment> (page 688) <Dynamic allowable moment> (page 689)

Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

-Workpiece mass: 2 [kg] •Workpiece mounting

- Speed: 200 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s condition:

LESH25 $\square \mathrm{E} \square$ /Battery-less Absolute Vertical

<Speed-Work load graph>
LESH25 $\square /$ Battery-less Absolute Pitching

<Dynamic allowable moment>

Based on the above calculation result, the LESH25 $\square \mathrm{EJ}-50$ should be selected.

Speed-Work Load Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)

* The following graphs show the values when the moving force is 100%.

LESH25 \square E \square

Cycle Time Graph (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LESH25		
Stroke	$[\mathrm{mm}]$	50	100	150
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	77	112	155
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$			
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	146	177	152

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Dynamic Allowable Moment

These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Acceleration/Deceleration

든뀬응	Load overhanging direction m : Work load [kg] Me: Allowable moment [$\mathrm{N} \cdot \mathrm{m}$]		Model		
			LESH25		
		Y	$\begin{array}{rr} 1500 \\ & 1250 \\ \boldsymbol{E} & 1000 \\ \boldsymbol{E} & 750 \\ \mathcal{M} & 500 \\ & 250 \\ & 0 \end{array}$		
		Z			
		X	$\begin{array}{cc} 2000 \\ & 1500 \\ \bar{E} & \\ \vdots & 1000 \\ \hline & \\ \hline & 500 \\ & 0 \end{array}$		
		Y	$\begin{array}{rr} & 3000 \\ & 2500 \\ \Xi & 2000 \\ \underline{E} & 1500 \\ \Omega & 1000 \\ & 500 \\ & 0 \\ & 0 \end{array}$	4 Work lo	
		Z	$\left.\begin{array}{\|rr} & 1500 \\ & 1250 \\ \boldsymbol{E} & 1000 \\ \underline{E} & 750 \\ \hline & 500 \\ & 250 \\ & 0 \end{array} \right\rvert\,$		 ad m [kg]

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

Dynamic Allowable Moment

$5000 \mathrm{~mm} / \mathrm{s}^{2}$

	Load overhanging direction m : Work load [kg] Me: Allowable moment [N.m] L : Overhang to the work load center of gravity [mm]		Model			
			LESH25			
-		Y		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 0 \\ & 0 \end{aligned}$	Work loa	
$\frac{\overline{7}}{1}$	Z			$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 0 \end{aligned}$		

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESH
Size: 25
Mounting orientation: Horizontal/Bottom/Wall/Vertica

Acceleration [mm/s²]: a

Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq 1
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESH
Size: 25
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 4.0
Work load center position [mm]: Xc = 250, Yc = 250, Zc = 500
2. Select three graphs from the top on page 689.

Mounting orientation

3. $L x=1000 \mathrm{~mm}, L y=\mathbf{6 5 0} \mathrm{mm}, L z=\mathbf{2 5 0 0} \mathrm{mm}$
4. The load factor for each direction can be found as follows.
$\alpha x=250 / 1000=0.25$
$\alpha y=250 / 650=0.38$
$\alpha z=500 / 2500=0.20$
5. $\alpha x+\alpha y+\alpha z=0.83 \leq 1$

Selection Procedure For the compact type LES series, refer to page 645.

Check the required force.
Step 2
Check the pushing force set value.

Selection Example

Operating conditions

-Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 s
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-Full cycle time (B): 6 s
-Stroke: $100[\mathrm{~mm}]$	

Check the required force.
Calculate the approximate required force for a pushing operation. Selection example) •Pushing force: 90 [N]

- Workpiece mass: 1 [kg]

The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (page 707).
Selection example) Based on the specifications,

- Approximate required force: $100[\mathrm{~N}]$
- Speed: 100 [mm / s]

The LESH25■E can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,
-LESH25 \square E table weight: 1.3 [kg] The required force can be found to be $100+13=113[\mathrm{~N}]$.
Step 2 Check the pushing force set value. <Pushing force set value-Force graph> (page 692)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

$$
\text { - Required force: } 113[\mathrm{~N}]
$$

The LESH25 \square EK can be temporarily selected as a possible candidate. This pushing force set value is 40 [\%].

Step 3

Check the duty ratio.
Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio, Selection example) Based on the allowable duty ratio,

- Pushing force set value: 40 [\%]

The allowable duty ratio can be found to be 30 [\%].
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio. Selection example) \bullet Pushing time + Operation (A): 1.5 s - Full cycle time (B): 6 s

The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Table Weight

Model	Stroke $[\mathrm{mm}]$			
	50	75	100	150
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

LESH25 $\square \mathrm{E} \square$ /Battery-less Absolute

<Pushing force set value-Force graph>

Allowable Duty Ratio

Battery-less Absolute

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Based on the above calculation result, the LESH25 \square EK-100 should be selected.

For allowable moment, the selection procedure is the same as that for the positioning control.

Pushing Force Set Value-Force Graph

Battery-less Absolute (Step Motor 24 VDC)

LESH25 \square E \square

Table Accuracy

Model	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.
C side perpendicularity to A side $[\mathrm{mm}]$	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3
W dimension tolerance $[\mathrm{mm}]$	± 0.2
Radial clearance $[\mu \mathrm{m}]$	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke [mm]			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH25	0.06	-	0.08	0.125

Graph $1 B$ side traveling parallelism to A side

Traveling parallelism:
The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

LESH Series

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table

Lr: Distance between the center
 of the table and the work load center of gravity

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

LESH Series $>$ p. 715

Selection Procedure For the compact type LES series, refer to page 649.

Check the work loadspeed.

Step 3
Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 696) Select a model based on the workpiece mass and speed while referencing the speed-work load graph.
Selection example) The LESH16 \square J-50 can be temporarily selected as a possible candidate based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to find an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2 .

* Although it is possible to make a suitable selection by using method 1 , this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (Page 697)

- T4: Settling time varies depending on the conditions such as motor types, load, and in position of the step data. Therefore, calculate the settling time while referencing the following value.

Step 3 Check the allowable moment. <Static allowable moment> (Page 697) <Dynamic allowable moment> (Pages 698, 699) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

-Workpiece mass: 1 [kg] -Workpiece mounting

- Speed: 220 [mm/s]
-Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: 5000 [$\mathrm{mm} / \mathrm{s}^{2}$]
- Cycle time: 0.5 s condition:

LESH16 \square /Step Motor Vertical

<Speed-Work load graph>

LESH16 $\square /$ Step Motor

<Cycle time>
LESH16/Pitching

<Dynamic allowable moment>

Based on the above calculation result, the LESH16 \square J-50 should be selected.

Step Motor (Servo/24 VDC)

* The following graphs show the values when moving force is 100%.

LESH8 \square

Vertical

LESH16 \square

Vertical

LESH25 \square

Vertical

Servo Motor (24 VDC)

* The following graphs show the values when moving force is 250%.

LESH8 \square A

Vertical

LESH16 \square A

Vertical

LESH $25{ }^{\text {R }}$ A

Vertical

LESH Series

Cycle Time Graph (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LESH8		LESH16			LESH25		
Stroke	$[\mathrm{mm}]$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	11							
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	11			43	77	112	155	
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	12		48		146	177	152	

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com
Acceleration/Deceleration
$5000 \mathrm{~mm} / \mathrm{s}^{2}$

Dynamic Allowable Moment

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" or the Electric Actuator Model Selection Software for confirmation: https://www.smcworld.com

(Acceleration/Deceleration $-5000 \mathrm{~mm} / \mathrm{s}^{2}$								
			Model					
			LESH8		LESH16		LESH25	
전								
$\frac{\text { ㄴ }}{3}$			$\left\lvert\, \begin{array}{cc} & 2000 \\ & 1500 \\ \underset{\xi}{\xi} & 1000 \\ \underset{\sim}{\infty} & \\ \hline \end{array}\right.$					

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESH
Size: 8/16/25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESH
Size: 8
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 1.0
Work load center position [mm]: Xc=80, Yc =100, Zc = $\mathbf{6 0}$
2. Select three graphs from the top of the left side first row on page 698.

Mounting orientation

3. $L x=480 \mathrm{~mm}, L y=225 \mathrm{~mm}, L z=1200 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.
$\alpha x=80 / 480=0.17$
$\alpha y=100 / 225=0.44$
$\alpha z=60 / 1200=0.05$
5. $\alpha x+\alpha y+\alpha z=0.66 \leq 1$

LESH Series $>$ p. 715

Selection Procedure For the compact type LES series, refer to page 655.

Check the required force.

Step 2 Check the pushing force set value.

 Step 3 Check the duty ratio.
Selection Example

Operating conditions

-Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 s
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-Full cycle time (B): 6 s
-Stroke: $100[\mathrm{~mm}]$	

Check the required force.
Calculate the approximate required force for a pushing operation. Selection example) •Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
The approximate required force can be found to be $90+10=100[\mathrm{~N}]$.
Select a model based on the approximate required force while referencing the specifications (Pages 718, 719).
Selection example) Based on the specifications,

- Approximate required force: $100[\mathrm{~N}]$
- Speed: 100 [mm / s]

The LESH25 \square can be temporarily selected as a possible candidate.
Then, calculate the required force for a pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the table weight,
-LESH25 \square table weight: $1.3[\mathrm{~kg}]$ The required force can be found to be $100+13=113[\mathrm{~N}]$.
Step 2 Check the pushing force set value.
<Pushing force set value-Force graph> (Page 702)
Select a model based on the required force while referencing the pushing force set value-force graph, and confirm the pushing force set value.
Selection example) Based on the graph shown on the right side,

> - Required force: $113[\mathrm{~N}]$ The LESH25■K can be temporarily selected as a possible candidate. This pushing force set value is 40 [\%].

Step 3

Check the duty ratio.

Confirm the allowable duty ratio based on the pushing force set value while referencing the allowable duty ratio, Selection example) Based on the allowable duty ratio, -Pushing force set value: 40 [\%] The allowable duty ratio can be found to be 30 [\%].
Calculate the duty ratio for the operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) \bullet Pushing time + Operation (A): 1.5 s -Full cycle time (B): 6 s
The duty ratio can be found to be $1.5 / 6 \mathrm{x}$ $100=25$ [\%], and this is within the allowable range.

Based on the above calculation result, the LESH25 \square K-100 should be selected. For allowable moment, the selection procedure is the same as that for the positioning control.

Table Weight
Table Weight

Model	Stroke $[\mathrm{mm}]$			
	50	75	100	150
LESH8	0.2	0.3	-	-
LESH16	0.4	-	0.7	-
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

LESH25 $\square /$ Step Motor

<Pushing force set value-Force graph>

Allowable Duty Ratio

Step Motor (Servo/24 VDC)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LESH8 $\square \mathrm{A}$ is up to 75%.

Pushing Force Set Value-Force Graph

Step Motor (Servo/24 VDC)

LESH8 \square

LESH16 \square

LESH25 \square

Servo Motor (24 VDC)

LESH8 \square A

LESH16 \square A

LESH $25{ }^{\text {R }}$ A

LESH Series

Table Accuracy

Model	LESH8	LESH16	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.		
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.		
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	0.05	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3		
W dimension tolerance $[\mathrm{mm}]$	± 0.2		
Radial clearance $[\mu \mathrm{m}]$	-4 to 0	-10 to 0	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke [mm]			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH8	0.055	0.065	-	-
LESH16	0.05	-	0.08	-
LESH25	0.06	-	0.08	0.125

Traveling parallelism:
The amount of deflection on a dial gauge when the table travels a full stroke with the body secured on a reference base surface

Model Selection LESH Series
 Incremental (Step Motor 24 VDC)
 Incremental (Servo Motor 24 VDC)

Table Deflection (Reference Value)

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.
 of the table and the work load center of gravity

LESH8
$\mathbf{L r}=70 \mathrm{~mm}$

LESH16
Lr $=120 \mathrm{~mm}$

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

Slide Table/High Rigidity Type LESH Series Lesh25
 RoHS
 * For details, refer to page 1343 and onward.

For details on controllers, refer to the next page.

Size
25

Motor mounting position

(3) Motor type

Symbol	Type	Compatible controllers/drivers		
		JXC51	JXCP1	JXCEF
E	Battery-less absolute	JXC61	JXCD1	JXC9F
	(Step motor 24 VDC)	JXCE1	JXCL1	JXCPF
		JXC91	JXCM1	JXCLF

44 Lead [mm]
\mathbf{J}
\mathbf{K}

6 Motor option

NiI	Without option
B	With lock

Body option

Nil	Without option
\mathbf{S}	Dust-protected ${ }^{* 1}$

8 Mounting*2

Symbol	Mounting	R type L type	D type
$\mathbf{N i l}$	Without side holder	\bigcirc	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

(9) Actuator cable type/length

Robotic cable			
Nil	None	R8	$8^{* 3}$
R1	1.5	RA	$10^{* 3}$
R3	3	RB	$15^{* 3}$
R5	5	RC	$20^{* 3}$

*1 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*2 For details, refer to page 713.
*3 Produced upon receipt of order
*4 The DIN rail is not included. It must be ordered separately
*5 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LES series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078.

[UL certification]

The JXC series controllers used in combination with electric actuators are UL certified.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products

Please download it via our website: https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	Ethervetlipu direct input type with STO sub.function	PROFINET direct input type	PROFNET direct input type with STO sub-function	DeviceNete ${ }^{\text {® }}$ direct input type	IO-Link direct input type	10.Link direct input type with STO sub-function	CC-Link direct input type
Series	$\begin{aligned} & \hline \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input	Etherletilliw direc input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	$\begin{gathered} \text { CC-Link } \\ \text { direct input } \end{gathered}$
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Power supply voltage	24 VDC										
Reference page	1017	1063									

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Specifications

Battery-less Absolute (Step Motor 24 VDC)

*1 Speed changes according to the work load. Check the "Speed-Work Load Graph (Guide)" on page 688.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
*4 A reference value for correcting errors in reciprocal operation
*5 Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*6 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
*7 With lock only
*8 For an actuator with lock, add the power for the lock.

Weight

Battery-less Absolute (Step Motor 24 VDC)

Model		Basic type/R type, Symmetrical type/L type			In-line motor type/ D type		
		LESH25 ${ }_{\text {L }}$			LESH25D		
Stroke [mm]		50	100	150	50	100	150
Product weight [kg]	Without lock	2.50	3.30	4.26	2.52	3.27	3.60
	With lock	2.84	3.64	4.60	2.86	3.61	3.94

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
10	Bearing stopper	Structural steel	Electroless nickel plating
		Brass	Electroless nickel plaing (LESH25RLLDonly)
$\mathbf{1 1}$	Motor plate	Structural steel	
$\mathbf{1 2}$	Cap	Silicone rubber	-
$\mathbf{1 3}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 4}$	Lead screw pulley	Aluminum alloy	-
$\mathbf{1 5}$	Motor pulley	Aluminum alloy	-
16	Spacer	Stainless steel	LESH25R/L only
$\mathbf{1 7}$	Origin stopper	Structural steel	Electroless nickel plating
$\mathbf{1 8}$	Bearing	-	-
$\mathbf{1 9}$	Belt	-	-
$\mathbf{2 0}$	Grommet	Synthetic resin	-
$\mathbf{2 1}$	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Bushing	-	Dust-protected option only
$\mathbf{2 3}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 4}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	Scraper	NBR	Dust-protected option only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH25 \square	LE-D-1-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 (20 g)

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Construction: In-line Motor Type/D Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreament + Electroess nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 2}$	Bearing stopper	Brass	Electroless nickel plating
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Socket	Aluminum alloy	-
$\mathbf{1 4}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 5}$	Hub (Motor side)	Stainless steel	LESH25D \square only
$\mathbf{1 6}$	Spacer	NBR	-
$\mathbf{1 7}$	Grommet	NBR	-
$\mathbf{1 8}$	Spider	Synthetic resin	-
$\mathbf{1 9}$	Cover	Synthetic resin	-
$\mathbf{2 0}$	Return guide	Stainless steel + NBR	Linear guide
$\mathbf{2 1}$	Scraper		

No.	Description	Material	Note
$\mathbf{2 2}$	Steel ball	Special steel	-
23	Bearing	-	-
24	Sim ring	Structural steel	-
25	Masking tape	-	-
26	Scraper	NBR	Dust-protected option only/ Rod
27	Lock	-	With lock only
28	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LESH25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Dimensions: Basic Type/R Type
LESH25RE

Model	C	D	F	G	J	K	M	N
LESH25RED-50] \square - $\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25RED-100 $\square \square-\square \square \square \square$	48	8	44	4	88	207	232	196
LESH25RED-150 $\square \square-\square \square \square \square$	65	8	66	4	132	285	310	274

[^0]
LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LESH25LE

Model	C	D	F	G	J	K	M	N
LESH25LE \square-50 $\square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25LE \square-100 $\square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25LE \square-150 $\square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions: In-line Motor Type/D Type

1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 4 mm .
The motor end cover hole size is $\varnothing 5.5$.
*5 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length
*6 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

LESH Series

Battery-less Absolute (Step Motor 24 VDC)

Side Holder (In-line Motor Type/D Type)

$[\mathrm{mm}]$							
Part no.*1	A	B	D	E	F	G	Applicable model
LE-D-3-3	81	99	12	6.6	30	49	LESH25DE

[^1]
Slide Table

 High Rigidity Type* For details, refer to page 1343 and onward.

How to Order

Basic type (R type) Symmetrical type (L type) In-line motor type (D type)

4 Lead [mm]

Symbol	LESH8	LESH16	LESH25
\mathbf{J}	8	10	16
K	4	5	8

5 Stroke [mm]		
Stroke	Note	
	Size	Applicable stroke
$\mathbf{5 0}$ to $\mathbf{7 5}$	$\mathbf{8}$	$50 * 2,75$
$\mathbf{5 0}$ to $\mathbf{1 0 0}$	16	$50 * 2,100$
$\mathbf{5 0}$ to $\mathbf{1 5 0}$	$\mathbf{2 5}$	$50,100,150$

6 Motor option

Nil	Without option
B	With lock*2

Applicable motor option chart

		Stroke	
Motor mounting position	Size	$\mathbf{5 0}$	$\mathbf{7 5}$ or more
R/L	$\mathbf{8}$	\times	\bigcirc
	$\mathbf{1 6}$	\times	\bigcirc
	$\mathbf{2 5}$	\bigcirc	\bigcirc
\mathbf{D}	$\mathbf{8}$	\bigcirc	\bigcirc
	$\mathbf{1 6}$	\bigcirc	\bigcirc
	$\mathbf{2 5}$	\bigcirc	\bigcirc

2 Motor mounting position

Actuator cable type/length*6

Standard cable [m]		Robotic cable			[m]
Nil	None	R1	1.5	RA	10*5
S1	1.5*8	R3	3	RB	15*5
S3	3*8	R5	5	RC	20*5
S5	5*8	R8	8*5		

$\left.\begin{array}{|c|c|c|}\hline 3 \text { Motor type } \\ \hline \text { Symbol } & \text { Type } & \begin{array}{c}\text { Compatible } \\ \text { controllers/drivers }\end{array} \\ \hline \text { Nil } & \begin{array}{c}\text { Step motor } \\ \text { (Servo/24 VDC) }\end{array} & \begin{array}{l}\text { JXC51 } \\ \text { JXC61 } \\ \text { JXCE1 }\end{array} \\ \text { JXCEFF } \\ \text { JXC91 } & \text { JXCPF } \\ \text { JXCP1 } \\ \text { JXCD1 } \\ \text { JXCL1 } & \text { LECP1 } \\ \text { JXCM1 }\end{array}\right]$

8 Mounting* ${ }^{* 4}$

Symbol	Mounting	R type L type	D type
$\mathbf{N i l}$	Without side holder	\bullet	\bullet
\mathbf{H}	With side holder (4 pcs.)	-	\bullet

JXC \square Serries For calails retert opage itr)

$L E C \square$ Series (For delails, refer to page 717.)

- Communication plug connector, I/O cable $* 13$

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol Numberes, Special specification

1	Single axis	Standard
F	Single axis	With STO sub-function

10 Controller/Driver type*7

Nil	Without controller/driver	
6N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*8 (Programless type)	NPN
1P		PNP
AN	LECPA* ${ }^{* 9}$ (Pulse input type)	NPN
AP		PNP

12 Controller/Driver mounting | Nil | Screw mounting |
| :---: | :---: |
| \mathbf{D} | DIN rail ${ }^{* 12}$ |

*1 LESH25DA is not available.
*2 As the applicable motor mounting positions and motor options vary depending on the stroke, refer to the applicable motor option chart on page 715
*3 For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
*4 Refer to page 731 for details.
*5 Produced upon receipt of order (Robotic cable only)
*6 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to pages 1092 and 1093 if only the actuator cable is required.
*7 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC/JXC series
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/ driver should be used with a UL1310 Class 2 power supply.
*8 Only available for the motor type "Step motor"
*9 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*10 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*11 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*12 The DIN rail is not included. It must be ordered separately.
*13 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input

The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct
<Check the following before use.>
(1) Check the actuator label for model number. This number should match that of the controller/driver
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LESH Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

Type	Step data input type	Step data input type	Programless type	Pulse input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	LECA6	LECP1	LECPA
Features	Parallel I/O	Parallel I/O	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)	
Max. number of step data	64 points		14 points	-
Power supply voltage	24 VDC			
Reference page	1017	1031	1042	1057

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Step Motor（Servo／24 VDC）

Model			LESH8 \square		LESH16■		LESH25■	
	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］${ }^{* 1 * 3}$	Horizontal	2	1	8	5	12	8
		Vertical	0.5	0.25	2	1	4	2
	Pushing force［ N$] 3 \mathrm{3} \%$ to 70\％＊2＊3		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］${ }^{* 1 * 3}$		10 to 200	20 to 400	10 to 200	20 to 400	10 to 150	20 to 400
$\stackrel{\overline{0}}{\hat{W}}$	Pushing speed［ mm / s ］		10 to 20	20	10 to 20	20	10 to 20	20
毖	Max．acceleration／deceleration［mm／s²］		5000					
\mid	Positioning repeatability［mm］		± 0.05					
\％	Lost motion［mm］＊4		0.15 or less					
¢	Screw lead［mm］		4	8	5	10	8	16
喜	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 5}$		50／20					
8	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
			IP30					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
\bigcirc	Motor type		Step motor（Servo／24 VDC）					
	Encoder		Incremental					
\％	Power supply voltage［V］		24 VDC $\pm 10 \%$					
	Power［W］＊6＊8		Max．power 35		Max．power 60		Max．power 74	
	Type		Non－magnetizing lock					
	Holding force［N］		24	2.5	300	48	500	77
发：	Power［W］＊8 Rated voltage［V］		3.5				5	

＊1 Speed changes according to the work load．Check the＂Speed－Work Load Graph（Guide）＂on page 696.
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊4 A reference value for correcting errors in reciprocal operation
＊5 Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊6 Indicates the max．power during operation（including the controller）
This value can be used for the selection of the power supply．
＊7 With lock only
＊8 For an actuator with lock，add the power for the lock．

Specifications

Servo Motor（24 VDC）

Model			LESH8 \square A		LESH16 \square A		LESH25 ${ }_{\text {R }} \mathrm{A}^{* 1}$	
	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］	Horizontal	2	1	5	2.5	6	4
		Vertical	0.5	0.25	2	1	2.5	1.5
	Pushing force 50 to 100\％［N］＊2		7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	31 to 62	19 to 38
	Speed［mm／s］		1 to 200	1 to 400	1 to 200	1 to 400	1 to 150	1 to 400
	Pushing speed［mm／s］＊2		1 to 20					
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］＊3		0.15 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s $\left.{ }^{2}\right]^{* 4}$		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Enclosure		IP30					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor output［W］		10		30		36	
	Motor type		Servo motor（24 VDC）					
	Encoder		Incremental					
	Power supply voltage［V］		24 VDC $\pm 10 \%$					
	Power［W］${ }^{* 5 * 7}$		Max．power 84		Max．power 124		Max．power 158	
\pm	Type		Non－magnetizing lock					
或第	Holding force［N］$* 6$		24	2.5	300	48	500	77
두ㅇㅠㅜㅇ	Power［W］＊7 ${ }^{* \prime}{ }^{* 6}$		3.5		2.9		5	
－			24 VDC $\pm 10 \%$					

＊1 LESH25DA is not available．
＊2 The pushing force values for LESH8 $\square \mathrm{A}$ is 50% to 75% ．Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 A reference value for correcting errors in reciprocal operation
＊4 Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊5 Indicates the max．power during operation（including the controller）
This value can be used for the selection of the power supply．
＊6 With lock only
＊7 For an actuator with lock，add the power for the lock．

Weight

Step Motor（Servo／24 VDC），Servo Motor（24 VDC）Common

Model		Basic type／R type，Symmetrical type／L type							In－line motor type／D type						
		LESH8 ${ }_{\text {L }}^{\text {R }}$（A）		LESH16 ${ }_{\text {L }}(\mathrm{A})$		LESH25 ${ }_{\text {L }}^{\text {R }}$（A）			LESH8D（A）		LESH16D（A）		LESH25D		
Stroke［mm］		50	75	50	100	50	100	150	50	75	50	100	50	100	150
Product	Without lock	0.55	0.70	1.15	1.60	2.50	3.30	4.26	0.57	0.70	1.25	1.70	2.52	3.27	3.60
weight［kg］	With lock	－	0.76	－	1.71	2.84	3.64	4.60	0.63	0.76	1.36	1.81	2.86	3.61	3.94

Construction: Basic Type/R Type, Symmetrical Type/L Type
A-A

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
$\mathbf{9}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 0}$	Bearing stopper	Brass	Electroless nickel plating
		(LESH25R/L only)	
$\mathbf{1 1}$	Motor plate	Structural steel	-
$\mathbf{1 2}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Lead screw pulley	Aluminum alloy	-
$\mathbf{1 4}$	Motor pulley	Aluminum alloy	-
$\mathbf{1 5}$	Spacer	Stainless steel	-
$\mathbf{1 6}$	Origin stopper	Structural steel	Electroless nickel plating
$\mathbf{1 7}$	Bearing	-	-
$\mathbf{1 8}$	Belt	-	-
$\mathbf{1 9}$	Grommet	Synthetic resin	-
$\mathbf{2 0}$	Cap	Silicone rubber	-

No.	Description	Material	Note
$\mathbf{2 1}$	Sim ring	Structural steel	-
$\mathbf{2 2}$	Bushing	-	Dust-protected option only
$\mathbf{2 3}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 4}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	Scraper	NBR	Dust-protected option only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH8 \square	LE-D-1-1
LESH16 \square	LE-D-1-2
LESH25 \square	LE-D-1-3
LESH25 $\square \mathbf{A}$	LE-D-1-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Component Parts

LESH Series

Construction: In-line Motor Type/D Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heattreament + Electroess nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Special treatment
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Motor flange	Aluminum alloy	Anodized
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{9}$	End cover	Aluminum alloy	Anodized
$\mathbf{1 0}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 1}$	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
$\mathbf{1 2}$	Bearing stopper	Brass	Electroless nickel plating
		Structural steel	Electroless nickel plating
$\mathbf{1 3}$	Socket	Aluminum alloy	-
$\mathbf{1 4}$	Hub (Lead screw side)	Aluminum alloy	-
$\mathbf{1 5}$	Hub (Motor side)	Stainless steel	LESH25D \square only
$\mathbf{1 6}$	Spacer	NBR	-
$\mathbf{1 7}$	Grommet	NBR	-
$\mathbf{1 8}$	Spider	Synthetic resin	-
$\mathbf{1 9}$	Cover	Synthetic resin	-
$\mathbf{2 0}$	Return guide	Stainless steel + NBR	Linear guide
$\mathbf{2 1}$	Scraper		

No.	Description	Material	Note
$\mathbf{2 2}$	Steel ball	Special steel	-
$\mathbf{2 3}$	Bearing	-	-
$\mathbf{2 4}$	Sim ring	Structural steel	-
$\mathbf{2 5}$	Masking tape	-	-
$\mathbf{2 6}$	Scraper	NBR	Dust-protected option only/ Rod
$\mathbf{2 7}$	Lock	-	With lock only
$\mathbf{2 8}$	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LESH8D	LE-D-3-1
LESH16D	LE-D-3-2
LESH25D	LE-D-3-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Dimensions: Basic Type/R Type

LESH8R

Model									C	F	G	J	K	M	N
LESH8R $\square \square-50 \square \square-\square \square \square \square \square$	46	29	3	58	111	125.5	95.5								
LESH8R $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5								

[^2]
LESH Series

Dimensions: Basic Type/R Type

LESH16R

Model	C	D	F	G	J	K	M	N
LESH16R $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106
LESH16RD \square-100 $\square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181

[^3]Dimensions: Basic Type/R Type

LESH25R

Model								
LESH25R $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25R $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25R $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

[^4]
LESH Series

Dimensions: Symmetrical Type/L Type

LESH8L

$3 \times$ M 3×0.5 thread depth 5.5

A-A

$\mathbf{G} \times \mathrm{M} 4 \times 0.7$ thread depth 8

Model	C	F	G	J	K	M	N
LESH8L $\square \square$-50 $\square \square-\square \square \square \square \square$	46	29	3	58	111	125.5	95.5
LESH8L $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5

$* 1$ This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions: Symmetrical Type/L Type

LESH16L

A-A
$\mathbf{G} \times \mathrm{M} 6 \times 1$ thread depth 12

	Mmm]							
Model	C	D	F	G	J	K	M	N
LESH16L $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106
LESH16L $\square \square-100 \square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

LESH Series

Incremental (Step Motor 24 VDC)

Dimensions: Symmetrical Type/L Type

LESH25L

Model	C	D	F	G	J	K	M	N
LESH25L $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25L $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25L $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
*5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions: In-line Motor Type/D Type

LESH8D

	Connector	
	Step motor	Servo motor
Motor cable	40 20 0	
Lock cable		

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 16 mm .
The motor end cover hole size is $\varnothing 5.5$.
*5 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length

* 6 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

LESH Series

Dimensions: In-line Motor Type/D Type

LESH16D

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable	$\begin{aligned} & \text { 毒 } \overbrace{i}^{4} \\ & 15 \\ & \hline 1 \end{aligned}$	

Model	L	B	D	E	F	J	K
LESH16D $\square \square$-50 $\square \square-\square \square \square \square \square$	219.5	40	6	116.5	65	39.5	122
LESH16D $\square \square$-50B $\square \square-\square \square \square \square \square$	283						
LESH16D $\square \square$-100 $\square \square-\square \square \square \square \square$	288.5	44	8	191.5	85	88.5	191
LESH16D $\square \square$-100B $\square \square-\square \square \square \square \square$	352						

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 17 mm .
The motor end cover hole size is $\varnothing 5.5$.

* 5 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction

Use screws that are between the maximum and minimum screw-in depths in length
*6 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

Dimensions: In-line Motor Type/D Type

*1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
*2 Position after returning to origin
*3 [] for when the direction of return to origin has changed
*4 The distance between the motor end cover and the manual override screw is up to 4 mm .
The motor end cover hole size is $\varnothing 5.5$.
*5 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length
*6 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

LESH Series

Side Holder (In-line Motor Type/D Type)

[mm]

Part no.*1	A	\mathbf{B}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	Applicable model
LE-D-3-1	45	57.6	6.7	4.5	20	33	LESH8D
LE-D-3-2	60	74	8.3	5.5	25	40	LESH16D
LE-D-3-3	81	99	12	6.6	30	49	LESH25D

*1 Part numbers for 1 side holder

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as the generation of play on the guide, reduced accuracy, reduced service life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it. This can cause a malfunction.

Handling

\triangle Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range of the step data [In position], the INP output signal will turn ON. Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds the step data [Trigger LV], the INP output signal will turn ON. Use the product within the specified range of the [Pushing force] and [Trigger LV].
To ensure that the actuator pushes the workpieces with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
2. When the pushing operation is used, be sure to set to [Pushing operation]. Never allow the table to collide with the stroke end except during return to origin.
When incorrect instructions are inputted, such as those which cause the product to operate outside of the specification limits or outside of the actual stroke through changes in the controller/driver settings and/or origin position, the table may collide with the stroke end of the actuator. Be sure to check these points before use.
If the table collides with the stroke end of the actuator, the guide, belt, or internal stopper may break. This can result in abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
3. Use the product with the following moving force.

- Step motor (Servo/24 VDC): 100\%
- Servo motor (24 VDC) : 250\%

If the moving force is set below the values above, it may cause the generation of an alarm.

Handling

\triangle Caution

4. The actual speed of this actuator is affected by the load.
Check the model selection section of the catalog.
5. Do not apply a load, impact, or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on the detected motor torque.
6. The table and guide block are made of special stainless steel, but can rust in an environment where droplets of water adhere to it.
7. Do not dent, scratch, or cause other damage to the body, table and end plate mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
8. Do not dent, scratch or cause other damage to the surface over which the rail and guide will move.
Doing so may cause play or an increase in the sliding resistance.
9. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
10. Keep the flatness of mounting surface within 0.02 mm . If a workpiece or base does not sit evenly on the body of the product, play in the guide or an increase in the sliding resistance may occur. Do not deform the mounting surface by mounting with workpieces tucked in.
11. Do not drive the main body with the table fixed.
12. When mounting the product, for R/L type fixed cable, keep the following dimension or more for bends in the cable. For D type, keep a 40 mm or longer diameter for bends in the cable.

LES/LESH Series

\triangle Specific Product Precautions 2
Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

\triangle Caution

13. When mounting the product, use screws of adequate length and tighten them to the maximum torque or less.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Body fixed/ Side mounting (Body tapped)	Model	Screw size		L(Max.screverindeght $/$ m)
	LES $\square 8 \mathrm{R} / \mathrm{L}$	M4 $\times 0.7$	1.5	8
	LESD8D	M5 x 0.8	3	10
	LES16R/L			
	LES16D	M6 x 1	5.2	12
	LES25R/L			
	LES25D	M8 x 1.25	10	16
	LESH25]			
Body fixed/ Side mounting (Through-hole)	Model	Screw size		L [mm]
	LES8R/L	M3 x 0.5	0.63	23.5
	LESH8R/L			25.5
	LES $\square 8 \mathrm{D}$	M4 x 0.7	1.5	18.2
	LES16R/L			33.5
	LES16D	M5 x 0.8	3	25.2
	LESH16R/L			35.5
	LESH16D			25.5
	LES25R/L			49
	LES25D	M6 x 1	5.2	39.8
	LESH25R/L			50.5
	LESH25D			39.5

	Model	Screw size		L [mm]
Front mounting	LES8R/L	M3 x 0.5	0.63	6
	LESH8R/L			5.5
	LES $\square 8 \mathrm{D}$	M4 x 0.7	1.5	8
	LES16R/L			
	LES16D	M5 x 0.8	3	
	LESH16			
	LES25R/L	M6 x 1	5.2	12
	LESH25R/L			10
	LES $\square 25 \mathrm{D}$			14

To prevent the workpiece retaining screws from penetrating the end plate, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the end plate and cause a malfunction.

Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	L (Min. to Max. screw-in depth [mm])
M3 x 0.5	0.63	2.1 to 4.1
		5 (Max.)
M4 x 0.7	1.5	2.7 to 5.7
M5 x 0.8	3	6.5 (Max.)
		3.3 to 7.3
M6 x 1	5.2	8 (Max.)

To prevent the workpiece retaining screws from touching the guide block, use screws that are the maximum screw-in depth or less. If long screws are used, they may touch the guide block and cause a malfunction.
Body fixed/Side mounting (Side holder)

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathbf{L}[\mathrm{mm}]$
LES \square 8D	$\mathrm{M} 4 \times 0.7$	1.5	6.7
LES $\square 16 \mathrm{D}$	$\mathrm{M} 5 \times 0.8$	3	8.3
LES $\square 25 \mathrm{D}$	$\mathrm{M} 6 \times 1$	5.2	12

When using the side holders to install the actuator, be sure to use the positioning pin. It can be displaced when vibration or excessive external force is applied.

14. For pushing operations, set the product to a position at least 0.5 mm away from a workpiece. (This position is referred to as the pushing start position.)
The following alarms may be generated and operation may become unstable if the product is set to the same position as a workpiece.
a. "Posn failed"

The product cannot reach the pushing start position due to variations in the width of workpieces.
b. "Pushing ALM"

The product is pushed back from the pushing start position after starting to push.
15. When external force is to be applied to the table, it is necessary to reduce the work load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table will increase, which may lead to the malfunction of the product.
16. When using the side holders to install the actuator, use within the following dimension range.
Otherwise, installation balance will deteriorate and cause loosening.

17. For the LES $\square \square \mathrm{D}$, do not grasp or peel off a masking tape on the bottom of the body.
The masking tape may peel off and foreign matter may get inside the actuator.
18. For the LES $\square \square D$, a gap will form between the motor flange and table when the table moves (marked with the arrow below). Be careful not to put hands or fingers in a gap.

LES/LESH Series Specific Product Precautions 3

\triangle
Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.

Handling

\triangle Caution

19. When mounting the body with through-holes in the following mounting orientations, make sure to use two side holders as shown in the figures.
Otherwise, installation balance will deteriorate and cause loosening.

Wall mounting
5 mm or less

Vertical mounting

20. Install the body as shown below with the \bigcirc.

Since the product support becomes unstable, it may cause a malfunction, noise or an increase in the deflection.

21. Even with the same product number, the table of some products can be moved by hand and the table of some products cannot be moved by hand. However, there is no abnormality with these products. (Without lock)
This difference is caused because there is a little variation with the positive efficiency (when the table is moved by the motor) and there is a large variation with the reverseefficiency (when the table is moved manually) due to the product characteristics. There is hardly any difference among products when they are operated by the motor.

Handling

\triangle Caution

22. For $L E S \square \square_{\mathrm{L}}^{\mathrm{R}}$, remove the cap and operate the manual override screw with a hexagon wrench.

Maintenance

. Warning

1. Ensure that the power supply is stopped before starting maintenance work or replacement of the product.
2. For lubrication, wear protective glasses.
3. Perform maintenance according to the following requirements.

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months*1	-	\bigcirc
Inspection every 250 km*1 $^{* 1}$	-	\bigcirc
Inspection every 5 million cycles*1	-	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for belt check (R/L type only)

Stop operation immediately and replace the belt when any of the following occur.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt

Belt corner has become rounded and frayed threads stick out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky
f. Cracks on the back of the belt are visible

LES/LESH Series

Battery-less Absolute Encoder Type
Specific Product Precautions
Be sure to read this before handling the products. Refer to page 1351 for safety instructions and pages 1352 to 1357 for electric actuator precautions.
Handling

\triangle Caution

1. Absolute encoder ID mismatch error at the first connection

In the following cases, an "ID mismatch error" alarm occurs after the power is turned ON. Perform a return to origin operation after resetting the alarm before use.

- When an electric actuator is connected and the power is turned ON for the first time after purchase*1
- When the actuator or motor is replaced
- When the controller is replaced
*1 If you have purchased an electric actuator and controller with the set part number, the pairing may have already been completed and the alarm may not be generated.
"ID mismatch error"
Operation is enabled by matching the encoder ID on the electric actuator side with the ID registered in the controller. This alarm occurs when the encoder ID is different from the registered contents of the controller. By resetting this alarm, the encoder ID is registered (paired) to the controller again.

When a controller is changed after pairing is completed				
	Encoder ID no. (* Numbers below are examples.)			
Actuator	17623	17623	17623	17623
Controller	17623	17699	17699	17623
ID mismatch error occurred?	No	Yes	Error reset \Rightarrow No	

2. In environments where strong magnetic fields are present, use may be limited.
A magnetic sensor is used in the encoder. Therefore, if the actuator motor is used in an environment where strong magnetic fields are present, malfunction or failure may occur. Do not expose the actuator motor to magnetic fields with a magnetic flux density of 1 mT or more.
When installing an electric actuator and an air cylinder with an auto switch (ex. CDQ2 series) or multiple electric actuators side by side, maintain a space of 40 mm or more around the motor. Refer to the construction drawing of the actuator motor.
3. The connector size of the motor cable is different from that of the electric actuator with an incremental encoder.
The motor cable connector of an electric actuator with a battery-less absolute encoder is different from that of an electric actuator with an incremental encoder. As the connector cover dimensions are different, take the dimensions below into consideration during the design process.

Battery-less absolute encoder connector cover dimensions

[^0]: *1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted This is the range within which the table can move when it returns to origin. Make sur
 on the table do not interfere with other workpieces or the facilities around the table.
 2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length
 *5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

[^1]: *1 Part number for 1 side holder

[^2]: *1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.
 *5 Secure the motor cable and lock cable so that the cables are not repeatedly bent

[^3]: *1 This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
 Use screws that are between the maximum and minimum screw-in depths in length.
 *5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

[^4]: $* 1$ This is the range within which the table can move when it returns to origin. Make sure that workpieces mounted on the table do not interfere with other workpieces or the facilities around the table.
 2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed

 * 4 If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length
 *5 Secure the motor cable and lock cable so that the cables are not repeatedly bent.

