Low Profile Slider Type C LEM Series

Size: 25, 32

Incremental (Step Motor 24 VDC)

Compact Low Profile

Table height reduced by using belt drive and offset guide.

Mounting interchangeable

 with the E-MY seriesBelt drive unit
Table height
 mm

Guide unit

Guide mechanism can be selected.

Basic type				Cam follower guide type			
LEM/B Series				LE/MC Series			
- Light load transfer - Combining with external guide - Long stroke				- Workpiece direct mounting - Long stroke			
Size	Work load [kg]			Size Work load [kg]			
25	6			25	10		
32	11			32 20			
Size						Size	
		25	32			25	32
	ke [mm]	2000	2000		oke [mm]	2000	2000
Table	height [mm]	40	40	Table	height [mm]	28	37
	d [mm/s]	1000	1000		ed [mm / s]	1000	1000

Selectable controllability
 Incremental (Step Motor 24 VDC)
 (Controller)

Linear guide single axis type

LEMH Series

Workpiece direct mounting Provides more moment resistance than the cam follower guide type High-speed transfer

Size	Work load [kg]
$\mathbf{2 5}$	10
$\mathbf{3 2}$	20

Linear guide double axis type LEMHT Series
Workpiece direct mounting Provides more moment resistance than the linear guide single axis type High-speed transfer

Size	Work load [kg]
$\mathbf{2 5}$	10
$\mathbf{3 2}$	20

- End to end operation similar to an air cylinder (12 intermediate stop positions)
- Easy position setting using numerical inputs

Programless type

 (With stroke study)LECP2 Series
End to end operation similar to an air cylinder 2 stroke end points +
12 intermediate positioning points
Control panel setting Wire-saving design

- Programless

 typeLECP1 Series
14 positioning points Control panel setting

Step data input type JXC51/61 Series 64 positioning points

- EtherCAT/EtherNet/IPTм/ PROFINET/DeviceNet ${ }^{\circledR} /$ IO-Link/CC-Link direct input type $J X C E \square / 91 / P 1 / D 1 / L \square / M 1$ Series

- Mounting interchangeable with the previous E-MY series

| LEM | LEM $\square \mathbf{2 5}$ |
| :--- | :--- | :--- | :--- |
| series | LEM $\square \mathbf{3 2}$ |

- Can be connected to various types of guide (LEMB Series)

* The movable length of the LEM is the stroke +6 mm of table movement, at the time of shipment.

- Easy maintenance (LEMC/H/HT Series)

The drive unit and the guide unit are separable.

> Easy attachment/ detachment

Side support (Option)

The body can be fixed from upward or downward.

Low Profile Slider Type LEM Series

- Motor placement: Mounting position of the motor is user selectable and can either be on the top, bottom, left, or right of the actuator.

Motor mounting position

Nil	Top mounting
U	Bottom mounting
$\mathrm{L}^{* 1}$	Symmetric, Top mounting
$\mathrm{L}^{* / 1}$	Symmetric, Bottom mounting

- Solid state auto switch can be mounted for checking the limit and the intermediate signal.

2-color indicator solid state auto switch Appropriate setting of the mounting position can be performed without mistakes.

*1 Can be selected only for the LEMC, LEMH, LEMHT
Application Examples

Variations

Belt Drive				* Cannot be used for vertical transfer		
Series	Size	Equivalent lead [mm]	Stroke $[\mathrm{mm}]^{* 1}$	Work load: Horizontal [kg]	Speed [mm / s]	Page
LEMB Basic type	25	48	$50,100,150,200,250,300,350,400,450,500,550,600,700,800,900,1000$, (1100), 1200, (1300), (1400), 1500, (1600), (1700), (1800), (1900), 2000	6 (10)*2	1000	363
	32			$11(20) * 2$	1000	
LEMC Cam follower guide type	25	48	$50,100,150,200,250,300,350,400,450,500,550,600,700,800,900,1000$, (1100), 1200, (1300), (1400), 1500, (1600), (1700), (1800), (1900), 2000	10	1000	
	32			20	1000	
LEMH Linear guide single axis type	25	48	$\begin{gathered} 50,100,150,200,250,300,350,400,450, \\ 500,550,600,(700),(800),(900),(1000) \end{gathered}$	10	2000	
	32		$50,100,150,200,250,300,350,400,450,500,550,600,(700)$, (800), (900), (1000), (1100), (1200), (1300), (1400), (1500)	20	2000	
LEMHT Linear guide double axis type	25	48	$50,100,150,200,250,300,350,400,450$, 500, 550, 600, (700), (800), (900), (1000)	10	2000	
	32		$50,100,150,200,250,300,350,400,450,500,550,600,(700)$, (800), (900), (1000), (1100), (1200), (1300), (1400), (1500)	20	2000	

[^0] *2 (): Using an external guide (Provided by the customer).

Incremental (Step Motor 24 VDC)

Low Profile Slider Type: Basic Type LEMB Series

Incremental (Step Motor 24 VDC)

Low Profile Slider Type: Cam Follower Guide Type LEMC Series

Incremental (Step Motor 24 VDC$)$

Low Profile Slider Type: Linear Guide Type LEMH/HT Series

	How to Order	391
	Specifications	p. 394
	Construction	p. 395
	Dimensions	p. 397
Auto Switch Mounting		p. 406
Specific Product Precautions		p. 409

Incremental (Step Motor 24 VDC) Controllers

(4)
Programless Controller (With Stroke Study)/LECP2 Series p. 1051
Programless Controller/LECP1 Series p. 1042
Step Data Input Type/JXC51/61 Series p. 1017

EtherCAT/EtherNet/IPTM/PROFINET/DeviceNet®/IO-Link/CC-Link
Direct Input Type/JXCE $\square / 91 / P 1 / D 1 / L \square / M 1$ Series 1063
Gateway Unit/LEC-G Series p. 1038
Actuator Cable p. 1092
Communication Cable for Controller Setting/LEC-W2A p. 1094
Teaching Box/LEC-T1 p. 1095

Low Profile Slider Type

Basic Type LEMB Series

Incremental (Step Motor 24 VDC)
p. 371

Linear Guide Single Axis Type LEMH Series

Cam Follower Guide Type LEMC Series

Linear Guide Double Axis Type LEMHT Series

Model Selection

Selection Procedure

Step 1
Tentative Selection of Guide Mechanism. Check the speed-work load, work load-acceleration/deceleration.

Check the dynamic allowable moment.

Step 3 Check the cycle time.

Selection Example

Operating conditions

- Workpiece mass: 10 [kg]
- Workpiece mounting condition
- Speed: 1000 [mm/s]
- Acceleration/Deceleration: 2500 [mm/s²]
- Stroke: 600 [mm]
- Mounting orientation: Horizontal upward

Step 1
Tentative Selection of Guide Mechanism

Series	Type	Guideline for tentative model selection							Note
		Use of external guide	Direct loaded (Horizontal)	Table accuracy*1	Direct mount (Wall mounting)	Moment resistance	Max. stroke [mm]	Max. speed [mm / s]	
LEMB	Basic type	©	\bigcirc	\triangle	\triangle	\triangle	2000	1000	- Light load transfer - Combining with external guide - Long stroke
LEMC	Cam follower guide type	\times	((\bigcirc	\bigcirc	2000	1000	- Workpiece direct mounting - Long stroke
LEMH	Linear guide single axis type	\times	(((($\begin{aligned} & \text { Size 25: } 1000 \\ & \text { Size 32: } 1500 \end{aligned}$	2000	- Workpiece direct mounting - Provides more moment resistance than the cam follower guide type - High-speed transfer
LEMHT	Linear guide double axis type	\times	()	()	()	©	Size 25: 1000 Size 32: 1500	2000	- Workpiece direct mounting - Provides more moment resistance than the linear guide single axis type - High-speed transfer

© : Most suitable \bigcirc : Suitable \triangle : Usable \times : Not recommended
*1 The table accuracy means the amount of table deflection when a moment is applied.

In conditions where a moment is generated, tentatively select the LEMH series.

<Speed-Work Load Graph>

Select a model based on the workpiece mass and speed while referencing the speed-work load graph.

LEMH32

<Work Load-Acceleration/Deceleration Graph>

Check that the set acceleration/deceleration of the work load is within the allowable range while referencing the work load-acceleration/deceleration graph.

LEMH32

Selection Procedure

Step 2 Check the allowable moment. <Static allowable moment*1> (page 366) <Dynamic allowable moment> (pages 367 to 369)
Confirm the moment that applies to the actuator is within the allowable range for both static*1 and dynamic conditions.
*1 For LEMC/H/HT

Based on the above calculation result, the LEMH32T-500 should be selected.

L: Stroke [mm] \cdots (Operating condition)
V: Speed [mm/s] \cdots (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the
constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed on the conditions such as motor types, load and, in position of the step data. Therefore, calculate the settling time while referencing the following value. T4 = 0.3 [s]

LEM Series

Incremental (Step Motor 24 VDC)

Speed-Work Load Graph (Guide)
 Step Motor (Servo/24 VDC)

LEMB25

LEMC25

LEMH/HT25

LEMB32

LEMC32

LEMH/HT32

Cycle Time Graph (Guide)

LEMB $\square / L E M C \square$ (Speed: $\mathbf{1 0 0 0 ~ m m / s) ~}$

LEMH $\square / L E M H T \square$ (Speed: 2000 mm/s)

Model Selection LEM Series

Incremental (Step Motor 24 VDC)
The following shows the allowable values of set acceleration to the work loads.
Set the acceleration within the allowable range.
Work Load-Acceleration/Deceleration Graph (Guide)

LEMB25

LEMB25 (Combining with external guide)/LEMC25

* Friction coefficient for combining with external guide is 0.1 or less.

LEMH25/LEMHT25

Static Allowable Moment ${ }^{* 1}$

Model	Size	Max. allowable moment [N•m]		
		M1	M2	M3
		Pitching	Rolling	Yawing
LEMC	$\mathbf{2 5}$	5	4	3.5
	$\mathbf{3 2}$	13	14	10
LEMH	$\mathbf{2 5}$	7	6	7
	$\mathbf{3 2}$	28	26	26
LEMHT	$\mathbf{2 5}$	46	55	46
	$\mathbf{3 2}$	100	120	100

LEMB32

LEMB32 (Combining with external guide)/LEMC32

* Friction coefficient for combining with external guide is 0.1 or less.

LEMH32/LEMHT32

*1 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

Dynamic Allowable Moment (LEMB Series)

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" for confirmation.

Acceleration/Deceleration —— $2500 \mathrm{~mm} / \mathrm{s}^{2} \quad---5000 \mathrm{~mm} / \mathrm{s}^{2} \quad----10000 \mathrm{~mm} / \mathrm{s}^{2} \quad \cdots \cdots \cdots \cdot 20000 \mathrm{~mm} / \mathrm{s}^{2}$

[^1]Dynamic Allowable Moment (LEMC/LEMH Series)

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" for confirmation.

* Vertical mounting is not available.

LEM Series

Incremental (Step Motor 24 VDC)

Dynamic Allowable Moment (LEMHT Series)

* These graphs show the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to the "Calculation of Guide Load Factor" for confirmation.

* Vertical mounting is not available.

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEM
Size: 25/32
Mounting orientation: Horizontal/Bottom/Wall
Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph while referencing the model, size, and mounting orientation.
3. Based on the acceleration and work load, find the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.
$\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z$
5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$, and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEMH
Size: 32
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 5
Work load center position [mm]: Xc = 50, Yc = 100, Zc = 200
2. Select three graphs from the top of the right side first row on page 368.

3. $L x=420 \mathrm{~mm}, \mathrm{Ly}=300 \mathrm{~mm}, \mathrm{Lz}=1000 \mathrm{~mm}$
4. The load factor for each direction can be found as follows.

$$
\begin{aligned}
& \alpha x=50 / 420=0.12 \\
& \alpha y=100 / 300=0.34 \\
& \alpha z=200 / 1000=0.2
\end{aligned}
$$

5. $\alpha x+\alpha y+\alpha z=0.66 \leq 1$

Low Profile Slider Type Basic Type

Symbol	Type	Numberof xes, Scacid seaicicion	
		Standard	$\begin{gathered} \text { With STO } \\ \text { sub-function } \end{gathered}$
5	Parallel input (NPN)	\bullet	
6	Parallel input (PNP)	\bullet	
E	EtherCAT	\bigcirc	\bullet
9	EtherNet/IPTM	\bullet	\bullet
P	PROFINET	\bullet	\bullet
D	DeviceNet ${ }^{\text {® }}$	\bullet	
L	IO-Link	-	\bullet
M	CC-Link	\bullet	

Communication plug connector, l/O cable*8

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable $(1.5 \mathrm{~m})$	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol Number of axes Specification
1 Single axis Standard

F Single axis With STO
$L E C \square$ Series (For delails, reler to page 373.)

8 Controller type

Nil	Without controller	
2N	LECP2 ${ }^{* 5}$$\binom{$ Programless type }{ (With stroke study) }	NPN
2P		PNP
1N	LECP1 (Programless type)	NPN
1P		PNP

(9 $/ 10$ cable length ${ }^{6} 6$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

10 Controller mounting

Nil	Screw mounting
\mathbf{D}	DIN rail*7

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 The strokes in bold are produced upon receipt of order.
*3 Produced upon receipt of order (Robotic cable only)
*4 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
*5 Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper.
*6 When "Without controller" is selected for controller types, I/O cable length cannot be selected. Refer to page 1056 (For LECP2), or page 1047 (For LECP1) if I/O cable is required.
*7 The DIN rail is not included. It must be ordered separately.
*8 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link
Select "Nil," "1," "3," or " 5 " for parallel input.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the
customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package. (They can be ordered separately.)
 Confirm that the combination of the controller/driver and the actuator is correct.
 <Check the following before use.>
 (1) Check the actuator label for the model number.
 This number should match that of the controller/driver.
 (2) Check that the Paralle I/O configuration matches (NPN or PNP)

 Controller

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEMB Series

Incremental (Step Motor 24 VDC)

Compatible Controllers

| | Step data
 input type | Programless type
 (With stroke study) | Programless type |
| :--- | :---: | :---: | :---: | :---: |
| Type | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Table 2 Switch and Acceleration*1

Switch no.	Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
$\mathbf{0}$	250
$\mathbf{1}$	500
$\mathbf{2}$	1000
$\mathbf{3}$	1500
$\mathbf{4}$	2000
$\mathbf{5}$	2500
$\mathbf{6}$	3000
$\mathbf{7}$	4000
$\mathbf{8}$	5000
$\mathbf{9}$	6000
$\mathbf{1 0}$	7500
$\mathbf{1 1}$	10000
$\mathbf{1 2}$	12500
$\mathbf{1 3}$	15000
$\mathbf{1 4}$	17500
$\mathbf{1 5}$	20000

*1 The factory default setting for the switch is
No. 0.

Step Motor (Servo/24 VDC)

Model		LEMB25	LEMB32
Stroke [mm]*1		50, 100, 150, 200, 250 300, 350, 400, 450, 500 550, 600, 700, 800, 900 1000, (1100), 1200, (1300) (1400), 1500, (1600), (1700) (1800), (1900), 2000	50, 100, 150, 200, 250 300, 350, 400, 450, 500 550, 600, 700, 800, 900 1000, (1100), 1200, (1300) (1400), 1500, (1600), (1700) (1800), (1900), 2000
	Work load [kg]*2 ${ }^{*}$ Horizontal	6 (10)	11 (20)
	Speed [mm/s]*2	48 to 1000 (Reter to Table 1 for set values when LECP1 or 2 is selected.)	
	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]^{* 7}$	20000 (Depends on the work load.)(Refer to Table 2 for set values when LECP1 or 2 is selected.)	
	Positioning repeatability [mm]	± 0.08	
	Lost motion [mm]*8	0.1 or less	
	Lead [mm]	48	
	Actuation type	Belt	
	Guide type	Sliding bearing	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]	5 to 40	
	Operating humidity range [\%RH]	90 or less (No condensation)	
	Enclosure	IP30	
	Allowable external force [N$]^{* 6}$	10	20
	Motor size	$\square 56.4$	
	Motor type	Step motor (Servo/24 VDC)	
	Encoder	Incremental	
	Power supply voltage [V]	$24 \mathrm{VDC} \pm 10 \%$	
	Power [W]*3*5	Max. power 123	Max. power 127
\%	Type*4	Non-magnetizing lock	
箮	Holding force [N]	36	
	Power consumption [W]*5	5	
	Rated voltage [V]	24 VDC $\pm 10 \%$	

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 Speed changes according to the work load.
Check the "Speed-Work Load Graph (Guide)" on page 365. The work load changes according to the work load mounting condition. Check the "Dynamic Allowable Moment" on page 367.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (): When combined with an external guide and the friction coefficient is 0.1 or less.
*3 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
*4 With lock only
*5 For an actuator with lock, add the power consumption for the lock.
*6 The resistance value of the attached equipment should be within the allowable external resistance value.
*7 Maximum acceleration and deceleration are limited by the work load and stroke.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" on page 366.
*8 A reference value for correcting errors in reciprocal operation

Weight

LEMB Series

Incremental (Step Motor 24 VDC)

Construction

LEMB

Option: Stroke adjustment unit

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Guide plate	Synthetic resin	
$\mathbf{3}$	Belt	-	
$\mathbf{4}$	Belt holder	Carbon steel	Chromating
$\mathbf{5}$	Belt stopper	Aluminum alloy	
$\mathbf{6}$	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{8}$	Seal band holder	Synthetic resin	
$\mathbf{9}$	End block	Aluminum die-casted	Painting
$\mathbf{1 0}$	Pulley holder	Aluminum alloy	
$\mathbf{1 1}$	Pulley shaft	Stainless steel	Heat treatment + Special treatment
$\mathbf{1 2}$	Pulley	Aluminum alloy	Anodized
$\mathbf{1 3}$	Motor pulley	Aluminum alloy	Anodized
$\mathbf{1 4}$	Motor mount	Aluminum die-casted	Painting
$\mathbf{1 5}$	Motor cover	Synthetic resin	
$\mathbf{1 6}$	Grommet	Synthetic resin	
$\mathbf{1 7}$	Band stopper	Stainless steel	
$\mathbf{1 8}$	Motor	-	

Applied portion	Order no.
Guide plate	GR-S-010 $(10 \mathrm{~g})$
Dust seal band	GR-S-020 $(20 \mathrm{~g})$

Component Parts

No.	Description	Material	Note
$\mathbf{1 9}$	Motor end block	Aluminum die-casted	Painting
$\mathbf{2 0}$	Dust seal band	Stainless steel	
$\mathbf{2 1}$	Bearing	-	
22	Bearing	-	
23	Hexagon bolt	Carbon steel	Chromating
24	Magnet	-	
25	Stroke adjuster	Aluminum alloy	Anodized (Optional)
26	Motor cover for lock	Aluminum alloy	Anodized Only "with lock"
27	Grommet	CR	Chloroprene rubber Only "with lock"

Replacement Parts/Grease Pack

Top mounting
LEMB25T- $\square \square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting

With lock

LEMB25T- \square B $\square-\square \square \square \square \square$

Bottom mounting

LEMB25UT- $\square \square-\square \square \square \square \square$

Bottom mounting

With lock

LEMB25UT- $\square \mathrm{B} \square-\square \square \square \square \square$

Stroke adjustment unit mounting position

LEMB25 $\square \mathrm{T}-\square \square \frac{\mathrm{W}}{\mathrm{W}}-\square \square \square \square \square$

LEMB Series

Incremental (Step Motor 24 VDC)

Dimensions Size 32
Refer to page 994 and after for dimensions of the controllers.
Top mounting
LEMB32T- $\square \square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting

With lock

LEMB32T- \square B $\square-\square \square \square \square \square$

Bottom mounting

LEMB32UT- $\square \square-\square \square \square \square \square$

Bottom mounting

With lock

LEMB32UT- \square B $\square-\square \square \square \square \square$

Stroke adjustment unit mounting position

LEMB32 $\square \mathrm{T}-\square \square \underset{\mathrm{W}}{\mathrm{W}}-\square \square \square \square \square$

Side Supports

Side support A

MY-S25A

Side support B

 MY-S25B

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When using an actuator with a longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts. The spacing (L) of the intermediate supports must be no more than the values shown in the following graph.

\triangle Caution

1. If the actuator mounting surfaces are not measured accurately, using the intermediate support may cause poor operation. Make sure to level the mounting surface when mounting the actuator. For long stroke operation involving overhang of the workpiece, implement intermediate support as recommended even if the support spacing is within the allowable limits shown in the graph. For the intermediate support, order a side support separately.
2. Support brackets are not for mounting. Use them solely for providing support.

LEMB Series

Incremental (Step Motor 24 VDC)

Floating Bracket

MYAJ25 * Mounting direction (1) and (2) are available for this model.

Application Example

Mounting direction (1) (to minimize the installation height)

Mounting Example

Detail drawing of Za_{1} (adjustable range)

Detail drawing of $\mathbf{Z} \mathbf{b}_{1}$ (adjustable range)

Floating Parts Dimensions

Application Example

Mounting direction (2) (to minimize the installation width)

Mounting Example

Detail drawing of $\mathbf{Z} \mathbf{b}_{2}$ (adjustable range)

Installation of Retaining Screws

Stroke Adjustment Unit

LEMB-AJ

[^2]
Mounting

Low Profile Slider Type Cam Follower Guide Type
 * For details, refer to page 1343 and onward.

LEMC Series LemC25,32

1 Size
25
32

2 Motor mounting position	
$\mathbf{N i I}$	Top mounting
\mathbf{U}	Bottom mounting
\mathbf{L}	Symmetric, Top mounting
$\mathbf{L U}$	Symmetric, Bottom mounting

Equivalent lead

\qquad

4 Stroke ${ }^{* 1 * 2}$ [mm]		
Stroke	None	
	Size	Applicable stroke
$\begin{aligned} & 50 \text { to } \\ & 2000 \end{aligned}$	25	50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, $900,1000,1100,1200,1300,1400$, 1500, 1600, 1700, 1800, 1900, 2000
$\begin{aligned} & 50 \text { to } \\ & 2000 \end{aligned}$	32	

(5) Motor option

Nil	Without option
B	With lock

6) Actuator cable type/length*4

Standard cable [m]		Robotic cable		[m]	
Nil	None	R1	1.5	RA	10*3
S1	1.5	R3	3	RB	15*3
S3	3	R5	5	RC	20*3
S5	5	R8	8*3		

The stroke adjustment unit is built into the product.
For auto switches, refer to pages 406 to 408.

$L E C \square$ Series (For details, refer to page 383.)

8 I/O cable length* ${ }^{*}$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

(9) Controller mounting

Nil	Screw mounting
\mathbf{D}	DIN rail*7

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 The strokes in bold are produced upon receipt of order.
*3 Produced upon receipt of order (Robotic cable only)
*4 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required.
*5 Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the
customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

*6 When "Without controller" is selected for controller types, I/O cable length cannot be selected. Refer to page 1056 (For LECP2), or page 1047 (For LECP1) if I/O cable is required.
*7 The DIN rail is not included. It must be ordered separately.
*8 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input. Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEMC Series

Incremental (Step Motor 24 VDC)

Compatible Controllers

| | Step data
 input type | Programless type
 (With stroke study) | Programless type |
| :--- | :---: | :---: | :---: | :---: |
| Type | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Table 2 Switch and Acceleration*1

Switch no.	Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
$\mathbf{0}$	250
$\mathbf{1}$	500
$\mathbf{2}$	1000
$\mathbf{3}$	1500
$\mathbf{4}$	2000
$\mathbf{5}$	2500
$\mathbf{6}$	3000
$\mathbf{7}$	4000
$\mathbf{8}$	5000
$\mathbf{9}$	6000
$\mathbf{1 0}$	7500
$\mathbf{1 1}$	10000
$\mathbf{1 2}$	12500
$\mathbf{1 3}$	15000
$\mathbf{1 4}$	17500
$\mathbf{1 5}$	20000

*1 The factory default setting for the switch is No. 0.

Step Motor (Servo/24 VDC)

Model			LEMC25	LEMC32
Stroke [mm]*1			50, 100, 150, 200, 250 300, 350, 400, 450, 500 550, 600, 700, 800, 900 1000, (1100), 1200, (1300) (1400), 1500, (1600), (1700) (1800), (1900), 2000	50, 100, 150, 200, 250 300, 350, 400, 450, 500 550, 600, 700, 800, 900 1000, (1100), 1200, (1300) (1400), 1500, (1600), (1700) (1800), (1900), 2000
	Work load [kg]*2 ${ }^{\text {2 }}$ Horizontal		10	20
	Speed [mm/s]*2		48 to 1000 (Refer to Table 1 for set values when LECP1 or 2 is selected.)	
	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]^{* 7}$		20000 (Depends on the work load.)(Refer to Table 2 for set values when LECP1 or 2 is selected.)	
	Positioning repeatability [mm]		± 0.08	
	Lost motion [mm]*8		0.1 or less	
	Lead [mm]		48	
	Actuation type		Belt	
	Guide type		Cam follower guide	
	Static allowable moment*9 [$\mathrm{N} \cdot \mathrm{m}$]	Mep (Pitching)	5	13
		Mey (Yawing)	3.5	10
		Mer (Rolling)	4	14
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Enclosure		IP10	
	Allowable external force [N$]^{* 6}$		10	20
	Motor size		$\square 56.4$	
	Motor type		Step motor (Servo/24 VDC)	
	Encoder		Incremental	
	Power supply voltage [V]		$24 \mathrm{VDC} \pm 10 \%$	
	Power [W]*3*5		Max. power 123	Max. power 127
	Type*4		Non-magnetizing lock	
	Holding force [N]		36	
	Power consumption [W]*5		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$	

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 Speed changes according to the work load.
Check the "Speed-Work Load Graph (Guide)" on page 365.
The work load changes according to the work load mounting condition.
Check the "Dynamic Allowable Moment" on page 368.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
*3 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply.
*4 With lock only
*5 For an actuator with lock, add the power consumption for the lock.
*6 The resistance value of the attached equipment should be within the allowable external resistance value.
*7 Maximum acceleration and deceleration are limited by the work load and stroke.
Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" on page 366.
*8 A reference value for correcting errors in reciprocal operation
*9 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped.
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

Weight

LEMC Series

Incremental (Step Motor 24 VDC)

Construction

LEMC

Motor option: With lock

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Belt	-	
3	L-type bracket	Aluminum alloy	Anodized
4	Belt stopper	Aluminum alloy	
5	End block	Aluminum alloy	Anodized
6	Pulley holder	Aluminum alloy	
7	Pulley shaft	Stainless steel	Heattreatment + Special treatment
8	Pulley	Aluminum alloy	Anodized
9	Motor pulley	Aluminum alloy	Anodized
10	Motor mount	Aluminum die-casted	Painting
11	Motor cover	Synthetic resin	
12	Grommet	Synthetic resin	
13	Motor	-	
14	Motor end block	Aluminum alloy	Anodized
15	Bearing	-	
16	Bearing	-	
17	Tension plate	Aluminum alloy	Anodized
18	Hexagon bolt	Carbon steel	Chromating
19	Motor cover for lock	Aluminum alloy	Anodized Only "with lock" 20
Grommet	CR	Chloroprene rubber	
Only "with lock"			
385			

Component Parts

No.	Description	Material	Note
$\mathbf{2 1}$	Guide unit body	Aluminum alloy	Anodized
$\mathbf{2 2}$	Slide table	Aluminum alloy	Anodized
$\mathbf{2 3}$	End plate	Aluminum alloy	Anodized
$\mathbf{2 4}$	Stopper	Carbon steel	Nickel plating
25	Stroke adjuster	Aluminum alloy	Anodized
$\mathbf{2 6}$	Magnet	-	
$\mathbf{2 7}$	Side cover	Aluminum alloy	Anodized
28	Cam follower cap	Aluminum alloy	Anodized
29	Cam follower	-	
$\mathbf{3 0}$	Cam follower	-	
$\mathbf{3 1}$	Eccentric gear	Stainless steel	
32	Gear bracket	Stainless steel	
33	Adjustment gear	Stainless steel	
34	Rail	Hard steel wire material	

Replacement Parts/Grease Pack

Applied portion	Order no.
Rail	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Top mounting
LEMC25T- $\square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke + 6 mm ."

Top mounting

With lock
LEMC25T- $-\mathrm{B}-\square \square \square \square \square$

Bottom mounting
With lock
LEMC25UT- $\square \mathrm{B}-\square \square \square \square \square$

Bottom mounting

LEMC25UT- $\square-\square \square \square \square$

Table details

LEMC Series

Incremental (Step Motor 24 VDC)

Dimensions Size 25

Symmetric/Top mounting

LEMC25LT- \square - $\square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting

With lock
LEMC25LT- $\square \mathrm{B}-\square \square \square \square$

$\frac{\text { Lock cable length } \approx 400}{(ø 3.5)}$
Bottom mounting
LEMC25LUT- $\square-\square \square \square \square \square$

Bottom mounting
With lock
LEMC25LUT- $\square \mathrm{B}-\square \square \square \square$

Table details

Top mounting
LEMC32T- $\square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting

With lock
LEMC32T- $-\mathrm{B}-\square \square \square \square$

Bottom mounting
LEMC32UT-

Bottom mounting
With lock
LEMC32UT- $\square \mathrm{B}-\square \square \square \square \square$

Table details

LEMC Series

Incremental (Step Motor 24 VDC)

Dimensions Size 32

Symmetric/Top mounting

LEMC32LT- \square - $\square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke + 6 mm ."
Top mounting

With lock

LEMC32LT- $\square \mathrm{B}-\square \square \square \square$

Bottom mounting

LEMC32LUT- $\square-\square \square \square \square \square$

Low Profile Slider Type
 Cam Follower Guide Type LEMC Series
 Incremental (Step Motor 24 VDC)

Side Supports

Side supports
MYC-S $\square A$

Model	Applicable actuator	A	B	C	D	E	F	G	$\varnothing \mathbf{H}$
MYC-S16A	LEMC25	60.6	64.6	70.6	77.2	15	26	4.9	3.4
MYC-S25A	LEMC32	95.9	97.5	107.9	115.5	25	38	6.4	4.5

* The side supports consist of a set of right and left brackets.

Usage Guide for Side Supports

When using an actuator with a longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts. The spacing (L) of the intermediate supports must be no more than the values shown in the following graph.

\triangle Caution

1. If the actuator mounting surfaces are not measured accurately, using the intermediate support may cause poor operation. Make sure to level the mounting surface when mounting the actuator. For long stroke operation involving overhang of the workpiece, implement intermediate support as recommended even if the support spacing is within the allowable limits shown in the graph. For the intermediate support, use the square nuts at the bottom of the body or order a side support separately.
2. Support brackets are not for mounting. Use them solely for providing support.

Low Profile Slider Type
 * For details, refer to page 1343 and onward. Linear Guide Single Axis Type/Double Axis Type LEMH/HT Series
 LEMH/LEMHT25, 32

For auto switches, refer to pages 406 to 408.

Low Profile Slider Type Linear Guide Single Axis Type/Double Axis Type

$L E C \square$ Series (For details, refer to page 393.)

8 I/O cable length* ${ }^{*}$

$\mathbf{N i l}$	Without cable (Without communication plug connector)
$\mathbf{1}$	1.5 m
$\mathbf{3}$	3 m
$\mathbf{5}$	5 m

9 Controller mounting

Nil	Screw mounting
\mathbf{D}	DIN rail*7

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 The strokes in bold are produced upon receipt of order.
*3 Produced upon receipt of order (Robotic cable only)
*4 The standard cable should only be used on fixed parts. For use on moving parts, select the robotic cable. Refer to page 1092 if only the actuator cable is required
*5 Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the
customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[UL-compliant products (For the LEC series)]
When compliance with UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEMH/HT Series

Incremental (Step Motor 24 VDC)

Compatible Controllers

| | Step data
 input type | Programless type
 (With stroke study) | Programless type |
| :--- | :---: | :---: | :---: | :---: |
| Type | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	EtherNetIIPTM direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	10-Link direct input type	10-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNet/IPTM direct input with STO sub-function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Speed/Acceleration (Set values for LECP1/2)

Switch and Speed*

Switch no.	Speed [mm/s]
$\mathbf{0}$	48
$\mathbf{1}$	75
$\mathbf{2}$	100
$\mathbf{3}$	150
$\mathbf{4}$	200
$\mathbf{5}$	300
$\mathbf{6}$	400
$\mathbf{7}$	500
$\mathbf{8}$	600
$\mathbf{9}$	800
$\mathbf{1 0}$	1000
$\mathbf{1 1}$	1200
$\mathbf{1 2}$	1400
$\mathbf{1 3}$	1600
$\mathbf{1 4}$	1800
$\mathbf{1 5}$	2000

Table2 Switch and Acceleration*1

Switch no.	Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
$\mathbf{0}$	250
$\mathbf{1}$	500
$\mathbf{2}$	1000
$\mathbf{3}$	1500
$\mathbf{4}$	2000
$\mathbf{5}$	2500
$\mathbf{6}$	3000
$\mathbf{7}$	4000
$\mathbf{8}$	5000
$\mathbf{9}$	6000
$\mathbf{1 0}$	7500
$\mathbf{1 1}$	10000
$\mathbf{1 2}$	12500
$\mathbf{1 3}$	15000
$\mathbf{1 4}$	17500
$\mathbf{1 5}$	20000

*1 The factory default setting for the switch is No. 0.

Step Motor (Servo/24 VDC)

Model			LEMH25/LEMHT25	LEMH32/LEMHT32
Stroke [mm]*1			$\begin{gathered} 50,100,150,200,250 \\ 300,350,400,450 \\ 500,550,600,(700) \\ (800),(900),(1000) \end{gathered}$	$\begin{gathered} 50,100,150,200,250,300,350 \\ 400,450,500,550,600,(700) \\ (800),(900),(1000),(1100) \\ (1200),(1300),(1400),(1500) \end{gathered}$
Actuator specifications	Work load [kg]*2 ${ }^{\text {2 }}$ Horizontal		10	20
	Speed [mm/s]*2		48 to 2000 (Refer to Table 1 for set values when LECP1 or 2 is selected.)	
	Max. acceleration/deceleration [mm/s $\left.{ }^{2}\right]^{* 7}$		20000 (Depends on the work load.)(Refer to Table 2 for set values when LECP1 or 2 is selected.)	
	Positioning repeatability [mm]		± 0.08	
	Lost motion [mm]*8		0.1 or less	
	Lead [mm]		48	
	Actuation type		Belt	
	Guide type		Linear guide	
	Static allowable moment*9 (For LEMH) [$\mathrm{N} \cdot \mathrm{m}$]	Mep (Pitching)	7	28
		Mey (Yawing)	7	26
		Mer (Rolling)	6	26
	Static allowable moment*9 (For LEMHT) [$\mathrm{N} \cdot \mathrm{m}$]	Mep (Pitching)	46	100
		Mey (Yawing)	46	100
		Mer (Rolling)	55	120
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Enclosure		IP10	
	Allowable external force [N$]^{* 6}$		10	20
	Motor size		$\square 56.4$	
	Motor type		Step motor (Servo/24 VDC)	
	Encoder		Incremental	
	Power supply voltage [V]		24 VDC $\pm 10 \%$	
	Power [W]*3*5		Max. power 123	Max. power 127
	Type*4		Non-magnetizing lock	
	Holding force [N]		36	
	Power consumption [W]*5		5	
	Rated voltage [V]		24 VDC $\pm 10 \%$	

*1 Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.
*2 Speed changes according to the work load.
Check the "Speed-Work Load Graph (Guide)" on page 365.
The work load changes according to the work load mounting condition. Check the "Dynamic Allowable Moment" on pages 368 and 369.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
*3 Indicates the max. power during operation (including the controller)
This value can be used for the selection of the power supply
*4 With lock only
*5 For an actuator with lock, add the power consumption for the lock.
*6 The resistance value of the attached equipment should be within the allowable external resistance value.
*7 Maximum acceleration and deceleration are limited by the work load and the stroke. Refer to the "Work Load-Acceleration/Deceleration Graph (Guide)" on page 366
*8 A reference value for correcting errors in reciprocal operation
*9 The static allowable moment is the amount of static moment which can be applied to the actuator when it is stopped
If the product is exposed to impact or repeated load, be sure to take adequate safety measures when using the product.

Weight

Linear Guide Single Axis Type

Linear Guide Double Axis Type

Stroke		50	100	150	200	250	300	350	400	450	500	550	600	(700)	(800)	(900)	(1000)	(1100)	(1200)	(1300)	(1400)	(1500)
Product weight [kg]	LEMHT25	2.40	2.61	2.82	3.03	3.24	3.45	3.66	3.87	4.08	4.29	4.50	4.71	5.13	5.55	5.97	6.38	-	-	-	-	-
	LEMHT32	4.82	5.20	5.58	5.97	6.35	6.73	7.12	7.50	7.88	8.27	8.65	9.04	9.80	10.57	11.34	12.10	12.87	13.64	14.41	15.17	15.94
Additional weigh	ht with lock [kg]											0.60										

LEMH Series

Incremental (Step Motor 24 VDC)

Construction

LEMH

Motor option: With lock

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Belt	-	
$\mathbf{3}$	L-type bracket	Aluminum alloy	Anodized
4	Belt stopper	Aluminum alloy	
5	End block	Aluminum alloy	Anodized
6	Pulley holder	Aluminum alloy	
7	Pulley shaft	Stainless steel	Heat treatment + Special treatment
$\mathbf{8}$	Pulley	Aluminum alloy	Anodized
9	Motor pulley	Aluminum alloy	Anodized
10	Motor mount	Aluminum die-casted	Painting
11	Motor cover	Synthetic resin	
12	Grommet	Synthetic resin	
13	Motor	-	
14	Motor end block	Aluminum alloy	Anodized
15	Bearing	-	
16	Bearing	-	
17	Tension plate	Aluminum alloy	Anodized

Component Parts

No.	Description	Material	Note
$\mathbf{1 8}$	Hexagon bolt	Carbon steel	Chromating
$\mathbf{1 9}$	Motor cover for lock	Aluminum alloy	Anodized Only "with lock"
$\mathbf{2 0}$	Grommet	CR	Chloroprene rubber Only "with lock"
$\mathbf{2 1}$	Guide unit body	Aluminum alloy	Anodized
$\mathbf{2 2}$	Slide table	Aluminum alloy	Anodized
$\mathbf{2 3}$	Guide	-	
$\mathbf{2 4}$	End plate	Aluminum alloy	Anodized
$\mathbf{2 5}$	Stopper	Carbon steel	Nickel plating
26	Stroke adjuster	Aluminum alloy	Anodized
27	Magnet	-	

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 (10 g)
	GR-S-020 (20 g)

Construction

LEMHT

Motor option: With lock

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
2	Belt	-	
3	L-type bracket	Aluminum alloy	Anodized
4	Belt stopper	Aluminum alloy	
5	End block	Aluminum alloy	Anodized
6	Pulley holder	Aluminum alloy	
7	Pulley shaft	Stainless steel	Heat treatment + Special treatment
8	Pulley	Aluminum alloy	Anodized
9	Motor pulley	Aluminum alloy	Anodized
10	Motor mount	Aluminum die-casted	Painting
11	Motor cover	Synthetic resin	
12	Grommet	Synthetic resin	
13	Motor	-	
14	Motor end block	Aluminum alloy	Anodized
15	Bearing	-	
16	Bearing	-	
17	Tension plate	Aluminum alloy	Anodized

Component Parts

No.	Description	Material	Note
$\mathbf{1 8}$	Hexagon bolt	Carbon steel	Chromating
$\mathbf{1 9}$	Motor cover for lock	Aluminum alloy	Anodized Only "with lock"
$\mathbf{2 0}$	Grommet	CR	Chloroprene rubber Only "with lock"
$\mathbf{2 1}$	Guide unit body	Aluminum alloy	Anodized
$\mathbf{2 2}$	Slide table	Aluminum alloy	Anodized
$\mathbf{2 3}$	Guide	-	
$\mathbf{2 4}$	End plate	Aluminum alloy	Anodized
$\mathbf{2 5}$	Stopper	Carbon steel	Nickel plating
$\mathbf{2 6}$	Stroke adjuster	Aluminum alloy	Anodized
$\mathbf{2 7}$	Magnet	-	

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

LEMH Series

Incremental (Step Motor 24 VDC)

Dimensions: Linear Guide Single Axis Type
Size 25
Refer to page 994 and after for dimensions of the controllers.

Top mounting

LEMH25T- $\square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke + 6 mm ."

Top mounting

With lock
LEMH25T- $-\mathrm{B}-\square \square \square \square \square$

Bottom mounting

LEMH25UT- $\square-\square \square \square \square$

Bottom mounting
With lock
LEMH25UT- \square B- $\square \square \square \square \square$

Table details

Dimensions: Linear Guide Single Axis Type

Size 25

Refer to page 994 and after for dimensions of the controllers.

Symmetric/Top mounting

LEMH25LT- \square - $\square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting
With lock
LEMH25LT- \square B- $\square \square \square \square$

Bottom mounting

LEMH25LUT-■- $\square \square \square \square$

Bottom mounting
With lock
LEMH25LUT- \square B- $\square \square \square \square$

Table details

LEMH Series

Incremental (Step Motor 24 VDC)

Dimensions: Linear Guide Single Axis Type
 Size 32

Refer to page 994 and after for dimensions of the controllers.
Top mounting
LEMH32T-

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting
With lock
LEMH32T- \square B- $\square \square \square \square \square$

Bottom mounting
LEMH32UT- \square - $\square \square \square \square \square$

399

Bottom mounting
With lock
LEMH32UT- \square B- $\square \square \square \square \square$

Table details

Dimensions: Linear Guide Single Axis Type

Size 32

Refer to page 994 and after for dimensions of the controllers.

Symmetric/Top mounting

LEMH32LT- \square - $\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting
With lock
LEMH32LT- $\square \mathrm{B}-\square \square \square \square \square$

Bottom mounting
LEMH32LUT-

Bottom mounting
With lock
LEMH32LUT- $\square \mathrm{B}-\square \square \square \square$

Table details

LEMHT Series

Incremental (Step Motor 24 VDC)

Dimensions: Linear Guide Double Axis Type
Size 25
Refer to page 994 and after for dimensions of the controllers.

Top mounting

LEMHT25T- $\square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting

With lock

LEMHT25T- \square B- $\square \square \square \square$

Bottom mounting
LEMHT25UT-ㅁ- $\square \square \square \square$

Table details

Size 25
Refer to page 994 and after for dimensions of the controllers.
Symmetric/Top mounting
LEMHT25LT- \square - $\square \square \square \square \square$

Top mounting
With lock
LEMHT25LT- \square B- $\square \square \square \square \square$

Bottom mounting
LEMHT25LUT- $\square-\square \square \square \square \square$

Bottom mounting
With lock
LEMHT25LUT- - B- $\square \square \square \square$

Table details

LEMHT Series

Incremental (Step Motor 24 VDC)

Dimensions: Linear Guide Double Axis Type
Size 32
Refer to page 994 and after for dimensions of the controllers.

Top mounting

LEMHT32T- $\square-\square \square \square \square \square$

*1 [] for when the direction of return to origin has changed (When the JXC $\square 1$, or LECP1 is used.)
*2 Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ."

Top mounting
With lock
LEMHT32T- \square B- $\square \square \square \square \square$

Bottom mounting
LEMHT32UT- $\square-\square \square \square \square \square$

Bottom mounting
With lock
LEMHT32UT- $\square \mathrm{B}-\square \square \square \square$

Table details

Dimensions：Linear Guide Double Axis Type Size 32

Refer to page 994 and after for dimensions of the controllers．

Symmetric／Top mounting

＊1［ ］for when the direction of return to origin has changed（When the JXC $\square 1$ ，or LECP1 is used．）
＊2 Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ．＂

Top mounting

With lock
LEMHT32LT－\square B－$\square \square \square \square$

Bottom mounting

LEMHT32LUT－$\square-\square \square \square \square \square$

Bottom mounting
With lock
LEMHT32LUT－\square B－$\square \square \square \square \square$

Table details

LEMH/HT Series

Incremental (Step Motor 24 VDC)

Usage Guide for Intermediate Supports

When using an actuator with a longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts. The spacing (L) of the intermediate supports must be no more than the values shown in the following graph.

LEM Series
 Auto Switch Mounting

Auto Switch Proper Mounting Position at Stroke End Detection

For LEMC/H/HT
The proper mounting position at stroke end detection (A dimension) changes depending on the motor mounting position (standard or symmetric).

D-M9, D-M9 $\square \mathbf{V}$
D-M9 $\square \mathbf{W}, \mathrm{D}-\mathrm{M} 9 \square \mathbf{W V} \quad[\mathrm{~mm}]$

Model	Nominal size	A	Operating range
LEMB	25	40	5.5
LEMC		8	3.5
LEMH		10	6
LEMHT		34	7
LEMB	32	40	5.5
LEMC		8.4	4
LEMH			5.5
LEMHT			5.5

* The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations (as much as $\pm 30 \%$) depending on the ambient environment.

Motor mounting position: Standard

Motor mounting position: Symmetric

Auto Switch Mounting

LEMB Series

When mounting an auto switch, first, hold a switch spacer between your fingers and press it into the slot. When doing this, confirm that it is set in the correct mounting orientation, or reattach it if necessary. Next, insert an auto switch into the slot and slide it until it is positioned under the switch spacer. After establishing the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

* When tightening the auto switch mounting screw, use a watchmaker's screwdriver with a handle of approximately 5 to 6 mm in diameter. Also, tighten with a torque of about 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn about 90° past the point at which tightening can first be felt.

Switch Spacer Part No.

Applicable bore size [mm]	$\mathbf{2 5}$	$\mathbf{3 2}$
Switch spacer part no.	BMY3-016	

LEMC/H/HT Series

When mounting an auto switch, insert the auto switch into the actuator's auto switch mounting slot as shown below. Once in the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

* When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle of approximately 5 to 6 mm in diameter.
Tightening Torque for Auto Switch Mounting Screw [$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
D-M9 $\square \mathbf{(V)}$ D-M9 $\mathbf{W}(\mathbf{V})$	0.10 to 0.15

Solid State Auto Switch Direct Mounting Type D-M9N(V)/D-M9P(V)/D-M9B(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

| D-M9 $\square, ~ D-M 9 ~$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | V (With indicator light)

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Sheath	Outside diameter [mm]	ø2.6		
Insulator	Number of cores	3 cores (B	ue/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$ø 0.88$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Min. bending radius [mm] (Reference values)		17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model		D-M9N(V)	D-M9P(V)	D-M9B(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

D-M9 \square V

2-Color Indicator Solid State Auto Switch Direct Mounting Type D-M9NW(V)/D-M9PW(V)/D-M9BW(V)

RoHS

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Using flexible cable as standard spec.
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used

Auto Switch Specifications

Refer to the SMC website for details on products that are compliant with international standards.

PLC: Programmable Logic Controller

D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED illuminates. Proper operating range \qquad Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)				
Sheath	Outside diameter $[\mathrm{mm}]$	$\varnothing 2.6$						
Insulator	Number of cores	3 cores (Brown/Blue/Black)	2 cores (Brown/Blue)					
	Outside diameter $[\mathrm{mm}]$	$\varnothing 0.88$						
Conductor	Effective area $\left[\mathrm{mm}^{2}\right]$	0.15						
	Strand diameter $[\mathrm{mm}]$	$\varnothing 0.05$						
Min. bending radius [mm] (Reference values)						17		

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Weight

Auto switch model				D-M9NW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	D-M9PW(V)	D-M9BW(V)
	$1 \mathrm{~m}(\mathbf{M})$	14		13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63	

D-M9 \square W

LEM Series

Specific Product Precautions 1

Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits. Select a suitable actuator by work load and allowable moment. If a load in excess of the specification limits is applied to the guide, adverse effects such as the generation of play in the guide, reduced accuracy, or reduced service life of the product may occur
2. Do not increase the speed in excess of the specification limits. Select a suitable actuator by the relationship between the "speedwork load", and the "work load-acceleration/deceleration". If the product is used outside of the specification limits, adverse effects such as the generation of noise, reduced accuracy, or reduced service life of the product may occur.
3. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a malfunction.
4. When external force is to be applied to the table, it is necessary to add the external force to the work load as the total carried load when selecting a size.
When a cable duct or flexible moving tube is attached in parallel to the actuator, it is necessary to add the friction to the work load as the total carried load when selecting a size, too.
5. The resistance value of the attached equipment should be within the allowable external resistance value.
6. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every few dozen cycles.
Failure to do so may result in the product running out of lubrication.

Model	Partial stroke
LEMB25	45 mm or less
LEMB32	45 mm or less
LEMC25	30 mm or less
LEMC32	40 mm or less
LEMH25	20 mm or less
LEMH32	25 mm or less
LEMHT25	20 mm or less
LEMHT32	25 mm or less

Handling

\triangle Caution

1. INP output signal (JXC51/61)
1) Positioning operation

When the product comes within the set range of the step data [In positon], the INP output signal will turn ON. Initial value: Set to [1] or higher.
2. Never allow the table to collide with the stroke end except during return to origin. (Except when the LECP2 controller is used.) Internal stopper can be broken.

3. The moving force should be the initial value.

If the moving force is set below the initial value, it may cause the generation of an alarm.
4. The actual speed of this actuator is affected by the work load. Check the model selection section of the catalog
5. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on the detected motor torque.

Handling

\triangle Caution

6. Do not dent, scratch, or cause other damage to the body or table mounting surfaces.
Doing so may cause unevenness in the mounting surface, play in the guide, or an increase in the sliding resistance.
7. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
8. Provide a flat surface for installing the actuator. The degree of surface flatness should be determined by the machine precision requirement, or its corresponding precision.
The degree of surface flatness for installing the actuator should be within $0.05 \mathrm{~mm} / 200 \mathrm{~mm}$. The degree of surface flatness for mounting a workpiece should be within 0.05 mm (LEMB), 0.02 mm (LEMC/H/HT).
9. When mounting the product, secure a bending diameter of 40 mm or longer for the cable.
10. Do not allow a workpiece to collide with the table during the positioning operation or within the positioning range.
11. When mounting the product, use screws of adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may result in a malfunction, while tightening with a lower torque can result in the displacement of the mounting position or, in extreme conditions, the actuator could become detached from its mounting position.

Workpiece fixed
LEMB type
LEMC/H/HT type

Model	Screw size	Maximum tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathbf{L}($ Maximum screw-in depth) $[\mathrm{mm}]$
LEMB \square	$\mathrm{M} 5 \times 0.8$	3	8
LEMC25 LEMH25	$\mathrm{M} 4 \times 0.5$	1.5	7
LEMC32 LEMH32	$\mathrm{M} 5 \times 0.8$	3	9
LEMHT25	$\mathrm{M} 5 \times 0.8$	3	9
LEMHT32	$\mathrm{M} 8 \times 1.25$	12.5	12

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they may touch the body and cause a malfunction.

LEM Series

Specific Product Precautions 2

Be sure to read this before handling the products. Refer to page 1351 for safety instructions, pages 1352 to 1357 for electric actuator precautions, and pages 1358 to 1367 for auto switch precautions.

Handling

© Caution

12. Do not operate by fixing the table and moving the actuator body.
13. The belt drive actuator cannot be used for vertical applications.
14. Check the specifications for the minimum speed of each actuator.
Failure to do so may result in unexpected malfunctions such as knocking.
15. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications due to the operating conditions. Change the speed setting to a speed that does not cause vibration.
16. High frequency noise will be generated during deceleration depending on the operating conditions. This is a noise generated during processing the regenerative power. It is not a failure.
17. When using an actuator with a longer stroke, implement an intermediate support.
When using an actuator with a longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts
18. Attaching and detaching the drive unit

To remove the drive unit, remove the 6 drive unit retaining cap screws and remove the slider from the guide unit. To install the drive unit, insert its slider into the slide table on the guide unit and tighten 2 screws of the connection part, and then equally tighten the 4 retaining cap screws. Tighten the retaining cap screws securely because if they become loose, problems may occur such as damage, malfunction.

19. Workpiece mounting

When mounting a magnetic workpiece, keep a clearance of 5 mm or greater between the auto switch and the workpiece. Otherwise, the magnetic force within the actuator may be lost, resulting in malfunction of the auto switch.

Handling

\triangle Caution

20. For the model where grease is applied to the dust seal band for sliding, when wiping off the grease to remove foreign matter, etc., be sure to reapply grease afterward.
21. Do not apply external force to the dust seal band.

Particularly during the transportation

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*1	\bigcirc	\bigcirc	\bigcirc

*1 Select whichever comes first.

- Items for visual appearance check

1. Loose set screws, Abnormal amount of dirt, etc.
2. Check for visible damage, Check of cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts
2. Loose or mechanical play in fixed parts or fixing screws

- Items for belt check

Stop operation immediately and replace the belt when any of the following occur. In addition, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out

Canvas fiber becomes fuzzy, Rubber is coming off and the fiber has become whitish, Lines of fibers have become unclear
b. Peeling off or wearing of the side of the belt Belt corner has become rounded and frayed threads stick out
c. Belt partially cut

Belt is partially cut, Foreign matter caught in the teeth of other parts is causing damage
d. A vertical line on belt teeth is visible

Damage which is made when the belt runs on the flange
e. Rubber back of the belt is softened and sticky.
f. Cracks on the back of the belt are visible

[^0]: *1 Strokes shown in () are produced upon receipt of order. Please contact SMC as all non-standard and non-made-to-order strokes are produced as special orders.

[^1]: * Vertical mounting is not available

[^2]: * Stroke adjustment unit includes the stroke adjuster and mounting screws.

