
 Clean Room Specification
 Secondary Batiery Compatible

DustrightiNater-jet-proof (IP65 Equivant)

Rod Type LEY $\square \mathrm{E}-\mathrm{X} 8$	size	$25,32,40$

Rod Type LEY-X7 $\operatorname{size} \quad 25,32,40$
Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 903

Dust-tightWater-jet-proof (IP65 Equivalent)

Rod Type LEY-X5
Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 917

Rod Type LEY-X5
AC Servo Motor
p. 925, 931

Rod Type LEY Series
sire 63
AC Servo Motor
p. 473, 489

* Option

Clean Room Specification

Slider Type Ball Screw Drive 11-LEFS Series
Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)

p. 938

Slider Type Ball Screw Drive
11-LEFS Series
AC Servo Motor
p. 953, 955

Support Guide for Ball Screw Drive Actuator 11-LEFG Series
p. 961

High Rigidity Slider Type
Ball Screw Drive
11-LEJS Series
AC Servo Motor
p. 967, 969

Secondary Battery Compatible

p. 974

Slider Type Ball Screw Drive 25A-LEFS Series
Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 975

Slider Type Ball Screw Drive
25A-LEFS Series
AC Servo Motor

High Rigidity Slider Type Ball
Screw Drive
25A-LEJS Series
AC Servo Motor

p. 981, 982

Rod Type 25A-LEY Series
Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
p. 983

Rod Type 25A-LEY Series
AC Servo Motor
p. 987, 989

Enclosure

Degrees of Protection

First Digit: Degree of protection against solid foreign objects

Degrees	Degree of protection
$\mathbf{0}$	Not protected
$\mathbf{1}$	Protected against solid foreign objects of $50 \mathrm{mmø}$ and larger
$\mathbf{2}$	Protected against solid foreign objects of $12 \mathrm{~mm} \varnothing$ and larger
$\mathbf{3}$	Protected against solid foreign objects of $2.5 \mathrm{mmø}$ and larger
$\mathbf{4}$	Protected against solid foreign objects of $1.0 \mathrm{~mm} \varnothing$ and larger
$\mathbf{5}$	Dust protected
$\mathbf{6}$	Dust-tight

Second Digit: Degree of protection against water

Degrees	Degree of protection	
$\mathbf{0}$	Not protected	-
$\mathbf{1}$	Protected against vertically falling water droplets	Dripproof type 1
$\mathbf{2}$	Protected against vertically falling water droplets when enclosure is tilted up to 15°	Dripproof type 2
$\mathbf{3}$	Protected against rainfall when enclosure is tilted up to 60	Rainproof type
$\mathbf{4}$	Protected against splashing water	Splashproof type
$\mathbf{5}$	Protected against water jets	Water-jet- proof type
$\mathbf{6}$	Protected against powerful water jets	Powerful water- jet-proof type
$\mathbf{7}$	Protected against the effects of temporary immersion in water	Immersible type
$\mathbf{8}$	Protected against the effects of continuous immersion in water	Submersible type

Example) Degrees of protection

Degrees of protection			
IP65	Solid foreign objects	Dust-tight	Dust particles are prevented from entering the device.
	Entry of water	Water-jet-proof*1	The direct application of water jets to the device from any direction will not cause any damage.
IP67	Solid foreign objects	Dust-tight	Dust particles are prevented from entering the device.
	Entry of water	Immersible*1	The amount of water that enters the device when the actuator (in the stopped state) is submersed in up to 1 m of water for up to 30 mins will not cause any damage.

[^0]
Environment Enclosure: IP65" equivalen/IP67 equvalent

LEY-X8 Series

Scraper Lube-retainer

Metal connector

Prevents dust and water droplets from entering between the cable and motor cover

Aluminum cover

Protects the motor
Grease supply holes

Mounting groove for auto switches

Water-resistant type
For checking the limit and the intermediate signal

* Order the water-resistant 2-color indicator solid state auto switch separately.

Battery-less absolute encoder compatible

Horizontal

LEY25 $\square \mathrm{E}-\mathrm{X8}$
$\square \square$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 \square E-X8
$\square \triangle$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square E-X8
$\square \triangle$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY25 $\square \mathrm{E}-\mathrm{X8}$

LEY32 $\square E-X 8$

LEY40 $\square \mathrm{E}-\mathrm{X8}$

Force Conversion Graph (Guide)

Battery-less Absolute (Step Motor 24 VDC)
LEY25 $\square E-X 8$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]					
40° [$40^{\circ} \mathrm{C}$ or less	50 or less	100	No restriction
:---	:---:	:---:	:---:					

LEY32 $\square E-X 8$

Ambient temperature	Pushing force set value [\%]	Duty ratio [\%]	Continuous pushing time [min]
$\mathbf{4 0} \mathbf{C}$ or less	70 or less	100	No restriction

LEY40 $\square \mathrm{E}-\mathrm{X8}$

[^1] $40^{\circ} \mathrm{C}$ or less 65 or less

Items not listed are the same as those of the standard product. For details, refer to page 421.
<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY25 $\square \mathbf{E}$	A/B/C	21 to 35	40 to 50%
LEY32 $\square \mathbf{E}$	A	24 to 30	50 to 70%
	B/C	21 to 30	
LEY40 $\square \mathbf{E}$	A	24 to 30	21 to 30
	B/C		

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY25 $\square \mathbf{c}$			LEY32 $\square \mathbf{E}$			LEY40 $\square \mathbf{E}$			
Lead	A	B	C	A	B	C	A	B	C	
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	7	14	28	
Pushing force	50%			70%				65%		

LEY-X8 Series

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

* The changes in the graph waveforms are due to the difference in components of different product strokes.

Rod Displacement: $\delta[\mathrm{mm}]$

Size	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 / 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
$\mathbf{2 5}$	$\pm 0.8^{\circ}$
32/40	$\pm 0.7^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Refer to pages $\mathbf{8 8 3}$ to $\mathbf{8 8 5}$ for model selection.

How to Order

Lead [mm]

Symbol	LEY25	LEY32/40
A	12	16
B	6	8
C	3	4

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

6 Motor option

Nil	Without option
\mathbf{B}	With lock

* For details, refer to the applicable stroke table below.

8 Mounting*2

Symbol	Type	Motor mounting position
		In-line
Nil	Eny Body bottom tapped	\bullet
\mathbf{F}	Rod flange*3 $^{* 3}$	\bullet

(9) Actuator cable type/length

Robotic cable			
MN	None	M8	$8^{* 4}$
M1	1.5	MA	$10^{* 4}$
M3	3	MB	$15^{* 4}$
M5	5	MC	$20^{* 4}$

Applicable Stroke Table*1 © Standard

Model Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range
LEY25	\bigcirc	-	-	30 to 400								
LEY32/40	\bigcirc	30 to 500										

10 Controller

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 The mounting bracket is shipped together with the product but does not come assembled.
*3 For the horizontal cantilever mounting of the rod flange, or ends tapped types, use the actuator within the following stroke range. LEY25: 200 or less • LEY32/40: 100 or less

\triangle Caution

[CE/UKCA-compliant products]

EMC compliance was tested by combining the electric actuator LEY series and the controller JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
[Precautions relating to differences in controller versions]
When the JXC series is to be used in combination with the battery-less absolute encoder, use a controller that is version V3.4 or S3.4 or higher. For details, refer to pages 1077 and 1078
*4 Produced upon receipt of order
*5 The DIN rail is not included. It must be ordered separately.
*6 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or "5" for parallel input.

The actuator and controller are sold as a package.

Confirm that the combination of the controller and actuator is correct.

<Check the following before use.>

*1 Check the actuator label for the model number. This number should match that of the controller.

LEY25DEB-100

* Refer to the Operation Manual for using the products. Please download it via our website:
https://www.smcworld.com

Type	Step data input type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet/IPTM direct input type	EtherNetl\|PTM direct inpultype with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\text {® }}$ direct input type	IO-Link direct input type	10.Link direct inputtype with STO sub.function	CC-Link direct input type
Series	$\begin{aligned} & \text { JXC51 } \\ & \text { JXC61 } \end{aligned}$	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	Parallel I/O	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet/IPTM direct input		PROFINET direct input	PROFINET direct innut with STO sub-function	DeviceNet ${ }^{\text {® }}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Battery-less absolute (Step motor 24 VDC)										
Max. number of step data	64 points										
Pover supply volage	24 VDC										
Reference page	1017	1063									

Specifications

Step Motor（Servo／24 VDC）

Model				LEY25 $\square \mathrm{E}-\mathrm{X8}$			LEY32 $\square \mathrm{E}-\mathrm{X8}$			LEY40 $\square \mathrm{E}-\mathrm{X8}$		
	Work load ［kg］＊1	Horizontal	（ 3000 ［mm／s $\left.{ }^{2}\right]$ ）	20	40	60	30	45	60	50	60	80
			（ 2000 ［ $\left.\left.\mathrm{mm} / \mathrm{s}^{2}\right]\right)$	30	55	70	40	60	80	60	70	90
		Vertical	（3000［mm／s $\left.{ }^{2}\right]$ ）	7	15	29	10	21	42	12	26	52
	Pushing force［ N ＊${ }^{*} * 3 * 4$			63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s］${ }^{* 4}$			18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100	24 to 400	12 to 230	6 to 110
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］			3000								
	Pushing speed［mm／s］＊5			35 or less			30 or less			30 or less		
	Positioning repeatability［mm］			± 0.02								
	Lost motion［mm］＊6			0.1 or less								
	Screw lead［mm］			12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}{ }^{* 7}$			50／20								
	Actuation type			Ball screw（LEY $\square \mathrm{D}$ ）								
	Guide type			Sliding bushing（Piston rod）								
	Enclosure＊8			IP65 equivalent／IP67 equivalent＊12								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40								
	Operating humidity range［\％RH］			90 or less（No condensation）								
	Motor size			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Battery－less absolute（Step motor 24 VDC）								
	Encoder			Battery－less absolute								
	Power supply voltage［V］			24 VDC $\pm 10 \%$								
	Power［W］＊9＊11			Max．power 48			Max．power 104			Max．power 106		
㞃	Type＊10			Non－magnetizing lock								
枈	Holding force［ N ］			78	157	294	108	216	421	127	265	519
客	Power［W］＊11			5			5			5		
¢	Rated voltage［V］			24 VDC $\pm 10 \%$								

＊1 Horizontal：The maximum value of the work load．An external guide is necessary to support the load．（Friction coefficient of guide： 0.1 or less）The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load．Check the＂Model Selection＂on page 883.
Vertical ：Speed changes according to the work load．Check the＂Model Selection＂on page 883.
The values shown in（）are the acceleration／deceleration．Set these values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The pushing force values for LEY25 \square E are 30% to 50% ，for LEY32 \square E are 30% to 70% ，and for LEY40 $\square E$ are 35% to 65% ，
The pushing force values change according to the duty ratio and pushing speed．Check the＂Model Selection＂on page 884.
＊4 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊5 The allowable speed for pushing operations．When push conveying a workpiece，operate at the vertical work load or less．
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance ：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures．For details on enclosure，refer to the＂Enclosure＂on page 881.
＊9 Indicates the max．power during operation（including the controller）
This value can be used for the selection of the power supply．
＊10 With lock only
＊11 For an actuator with lock，add the power for the lock．
＊12 Excludes the controller body and the connector part on the controller side

Weight

Weight: In-line Motor Type

LEY25D									
Stroke	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$
Product weight $[\mathbf{k g}]$	1.48	1.55	1.72	1.97	2.15	2.32	2.50	2.67	2.85

LEY32D														
Stroke	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$			
Product weight $[\mathbf{k g}]$	2.58	2.69	2.98	3.36	3.65	3.94	4.22	4.51	4.80	5.08	5.37			

LEY40D											
Stroke	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$
Product weight [kg]	2.93	3.04	3.33	3.71	4.00	4.29	4.57	4.86	5.15	5.43	5.72

Additional Weight

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.35	0.65	0.65	
Rod end male thread	Male thread	0.03	0.03	0.03
	Nut	0.02	0.02	0.02
Rod flange (including mounting bolt)	0.17	0.20	0.20	

LEY-X8 Series

Construction

In-line motor type: $\operatorname{LEY}_{40}{ }_{42}^{25} \mathrm{D}$

When rod end male thread selected

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	Anodized
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Resin	
9	Socket	Stainless steel	
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Magnet	-	
$\mathbf{1 4}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 5}$	Wear ring	Resin	Stroke 101 mm or more
$\mathbf{1 6}$	Greater water resistant scraper	Stainless steel/NBR	

No.	Description	Material	Note
$\mathbf{1 7}$	Retaining ring	Stainless steel	
$\mathbf{1 8}$	Motor	-	
$\mathbf{1 9}$	Lube-retainer	Felt	
$\mathbf{2 0}$	O-ring	NBR	
$\mathbf{2 1}$	Gasket	Chloroprene	
$\mathbf{2 2}$	Motor adapter	Aluminum alloy	LEY25 only
$\mathbf{2 3}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{2 4}$	Metal connector	Zinc die-casted	Chrome plating
$\mathbf{2 5}$	End cover	Aluminum alloy	Anodized
$\mathbf{2 6}$	Hub	Aluminum alloy	
27	Spider	NBR	
28	Motor block	Aluminum alloy	Anodized
29	Seal washer	Stainless steel/NBR	
$\mathbf{3 0}$	Socket (Male thread)	Stainless steel	
31	Nut	Stainless steel	

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$ GR-S-020 $(20 \mathrm{~g})$

[^2]Grease should be applied at 1 million cycles or 200 km, whichever comes first.

Dimensions

25
Rod end male thread: LEY32D $\square-\square \square$ M

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Size	Stroke range [mm]	A		B	C	D	EH	EV	FH	FV	G	H	J	K	L	M	O1	R
		Without lock	With lock															
25	30 to 100	262.5	312.5	89.5	13	20	44	45.5	57.6	57.7	61.4	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8
	105 to 400	287.5	337.5	114.5														
32	30 to 100	273	323	96	13	25	51	56.5	69.6	79.6	72.4	M8 x 1.25	31	22	18.5	40	M6x 1.0	10
	105 to 500	303	353	126														
40	30 to 100	295	355	96	13	25	51	56.5	69.6	79.6	72.4	M8 x 1.25	31	22	18.5	40	M6x 1.0	10
	105 to 500	325	375	126														

Size	Stroke range [mm]	PA	PB	PC	PD	Q1	Q2		Q3	Q4	Q5		U	W		Y1	Y2	Y ${ }_{3}$
							Without lock	With lock			Without lock	With lock		Without lock	With lock			
25	30 to 100	15.4	8.2	15.9	6.5	3.5	$2 \times$ ø22	$3 \times \varnothing 22$	28	18.7	-	23	0.9	155	205	28	71	19
	105 to 400																96	
32	30 to 100	15.4	8.2	15.9	7.1	3.5	$2 \times$ ø22	$3 \times ø 22$	36	28	-	32	1	155	205	30	75.5	16
	105 to 500																105.5	
40	30 to 100	15.4	8.2	15.9	7.1	3.5	$2 \times$ ø22	$3 \times ø 22$	36	28	-	32	1	177	227	30	75.5	16
	105 to 500																105.5	

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32/40	30 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^3]
LEY-X8 Series

Option: Actuator Cable

[Metal connector robotic cable for battery-less absolute (Step motor 24 VDC)]

LE-CE-1-X4

Cable length (L) [m]

$\mathbf{1}$	1.5
$\mathbf{3}$	3
$\mathbf{5}$	5
$\mathbf{8}$	$8^{* 1}$
\mathbf{A}	$10^{* 1}$
\mathbf{B}	$15^{* 1}$
\mathbf{C}	$20^{* 1}$

* 1 Produced upon receipt of order

Weight

Product no.	Weight [g]	Note
LE-CE-1-X4	270	
LE-CE-3-X4	440	
LE-CE-5-X4	650	
LE-CE-8-X4	Robotic cable	
LE-CE-A-X4		
LE-CE-B-X4		
LE-CE-C-X4	2290	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
$\overline{\text { A }}$	1		Red	1
A	2		Brown	2
COM-A	3		Green	3
COM-B	4		Blue	4
$\overline{\text { B }}$	5		Yellow	5
B	6		Orange	6
Signal	Connector B terminal no.	Shield	Cable color	Connector D terminal no.
Vcc	1		Brown	12
GND	2	,	Black (Brown)	13
SD+ (RX)	3		Yellow	11
SD- (TX)	4	: MCN	Black (Yellow)	10
A	5		Black (Red)	6
$\overline{\mathrm{A}}$	6	: \times M	Red	7
B	7	1:	Black (Orange)	8
\bar{B}	8	i, MOC:	Orange	9
Shield	9		Black	3

[Metal connector robotic cable with lock for battery-less absolute (Step motor 24 VDC)]

LE - CE-1-B-X4

Cable length (L) [m]
$\mathbf{1}$
$\mathbf{3}$
$\mathbf{5}$
$\mathbf{8}$
\mathbf{A}
\mathbf{B}
\mathbf{C}

*2 Produced upon receipt of order

With lock and sensor

Weight

Product no.	Weight [g]	Note
LE-CE-1-B-X4	320	
LE-CE-3-B-X4	490	
LE-CE-5-B-X4	700	
LE-CE-8-B-X4		
LE-CE-A-B-X4	1030	
LE-CE-B-B-X4	1250	
LE-CE-C-B-X4	1810	

Signal	Connector A terminal no.		Cable color	Connector C terminal no.
$\overline{\mathrm{A}}$	1		Red	1
A	2		Brown	2
COM-A	3		Green	3
COM-B	4		Blue	4
\bar{B}	5		Yellow	5
B	6		Orange	6
Signal	Connector B terminal no.	Shield	Cable color	Connector D terminal no.
Vcc	1	11	Brown	12
GND	2		Black (Brown)	13
SD+ (RX)	3	$:$:	Yellow	11
SD- (TX)	4	1	Black (Yellow)	10
A	5		Black (Red)	6
$\overline{\mathrm{A}}$	6		Red	7
B	7		Black (Orange)	8
\bar{B}	8	,	Orange	9
Shield	9		Black	3
Signal	Connector E terminal no.			
Lock (+)	4	-	Red	4
Lock (-)	3		Black	5
Sensor (+)	1	\bigcirc	Brown	1
Sensor (-)	2		Blue	2

LEY-X8 Series
 Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch: D-M9 \square A(V)

LEY25, 32

Switch mounting groove

[mm]

Size	Stroke range	Auto switch position				Return to origin distance E	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D		-
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32/40	20 to 100	30.5	85.5	42.5	53.5	(2)	4.9
	105 to 500	90.5		102.5			

* The values in the table above are to be used as a reference when mounting auto switches for stroke end detection. Adjust the auto switch after confirming the operating conditions in the actual setting.
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approx. $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Tightening Torque for Auto Switch Mounting Screw

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square \mathbf{A}(\mathbf{V})$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V)

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red) - Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please contact SMC if using coolant liquid other than water based solution.

Weight

Auto switch model			D-M9NA(V)
(D-M9PA(V)	D-M9BA(V)		
Lead wire	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7
	$1 \mathrm{~m}(\mathbf{M})$	14	13
	$3 \mathrm{~m}(\mathbf{L})$	41	38
	$5 \mathrm{~m}(\mathbf{Z})$	68	63

PLC: Programmable Logic Controller						
D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	elay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NAD	D-M9NAV \square D-M9PA \square D	D-M9PAV]	D-M9BA	D-M9BAV \square
Sheath	Outside diameter [mm]	ø2.6				
Insulator	Number of cores	3 cores (Brown/Blue/Black)			2 cores (Brown/Blue)	
	Outside diameter [mm]	$\varnothing 0.88$				
Conductor	Effective area [mm^{2}]	0.15				
	Strand diameter [mm]	$\varnothing 0.05$				
Min. bending radius [mm]		17				

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Dimensions

D-M9 \square A

D-M9 \square AV

Environment Enclosure: IP65 equvalen/iP67 equivalent

LEY-X7 Series

Scraper Lube-retainer

Grease supply holes

Seal connector

Prevents dust and water droplets from entering between the cable and motor cover

Aluminum cover

Protects the motor
\qquad

Speed-Work Load Graph (Guide)
For Step Motor (Servo/24 VDC) JXC $\square 1$, LECP1

Horizontal

LEY25 \square-X7
V \square for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 \square-X7
$\nabla \square$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square-X7
$\nabla \nearrow$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEY25 \square-X7

LEY32 \square-X7

LEY40 \square-X7

Speed-Work Load Graph (Guide)
Refer to page 897 for the JXC $\square 1$
LECP1 and page 899 for the LECA6.
For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}

Vertical

LEY25 $\square-X 7$

LEY32 $\square-X 7$

LEY40 \square-X7

LEY-X7 Series

Speed-Work Load Graph (Guide)
 For Servo Motor (24 VDC) LECA6

Refer to page 897 for the JXC $\square 1$, LECP1 and page 898 for the LECPA, JXC \square_{3}^{2}.

Horizontal

LEY25 \square A-X7

Vertical
LEY25 \square A-X7

Force Conversion Graph

Step Motor (Servo/24 VDC)

LEY25 \square-X7

Ambient temperature	Pushing force set value ${ }^{* 1}$ [\%]	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	65 or less	100	No restriction

LEY32 \square-X7

Ambient temperature	Pushing force set value* [\%]	Duty ratio $[\%]$	Continuous pushing time [min]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0 ^ { \circ } \mathbf { C }}$	65 or less	100	No restriction
	85	50	15 or less

LEY40 \square-X7

Ambient temperature	Pushing force set value*1 [\%]	Duty ratio $[\%]$	Continuous pushing time [min]
$\mathbf{4 0 ^ { \circ } \mathbf { C } \text { or less }}$	65 or less	100	No restriction

Servo Motor (24 VDC)

LEY25 \square A-X7

Ambient temperature	Pushing force set value $[\%]$	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$ or less	95 or less	100	No restriction

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed> Without Load

Model	Lead	Pushing speed [mm/s]	Pusthing force (Seting input value)	Model	Lead	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY25	A/B/C	21 to 35	50 to 65\%	LEY25■A	A/B/C	21 to 35	80 to 95%
LEY32	A	24 to 30	60 to 85%				
	B/C	21 to 30					
LEY40	A	24 to 30	50 to 65\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY25 \square			LEY32 \square			LEY40 \square			LEY25 \square A		
Lead	A	B	C	A	B	C	A	B	C	A	B	C
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	7	14	28	1.2	2.5	5
Pushing force	65%				85%				65%			
95%												

LEY-X7 Series

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

* The changes in the graph waveforms are due to the difference in components of different product strokes.

Rod Displacement: $\delta[\mathrm{mm}]$

Size Stroke	30	50	100	150	200	250	300	350	400	450	500
$\mathbf{2 5}$	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-
$\mathbf{3 2 / 4 0}$	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8

* The values without a load are shown.

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
25	$\pm 0.8^{\circ}$
$\mathbf{3 2 / 4 0}$	$\pm 0.7^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
This may cause the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Refer to pages 897 to 901 for model selection.

How to Order

3 Motor type

Symbol	Type	Size		Compatible controllers/	
		$\mathbf{2 5}$	$\mathbf{3 2 / 4 0}$		
Nilivers					

5 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

6 Motor option

Nil	Without option
\mathbf{B}	With lock

* For details, refer to the applicable stroke table below.

8 Mounting*2

Symbol	Type	Motor mounting position
Nil	Ends tapped $/$ Body bottom tapped	\bullet
\mathbf{F}	Rod flange*3	\bullet

(9) Actuator cable type/length

R1	1.5	RA	$10^{* 5}$	
R3	3	RB	$15^{* 5}$	
R5	5	RC	$20^{* 5}$	
R8	$8^{* 5}$			

Applicable Stroke Table* ${ }^{* 1}$
-: Standard

Model \quadStroke Lmm	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$	Manufacturable stroke range
LEY25	\bullet	-	-	30 to 400								
LEY32/40	\bullet	30 to 500										

* For auto switches, refer to pages 910 and 911.
* "-X7" is not added to an actuator model with a controller/driver part number suffix. Example) "LEY25DB-100" for the LEY25DB-100BM-R1AN1-X7

$L E C \square$ Series (For detalis, reier to page 905)

10 Controller/Driver type*6		
Nil	Without controller/driver	
6 N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1 (Programless type)	NPN
1P		PNP
AN	LECPA*7 (Pulse input type)	NPN
AP		PNP

11 I/O cable length*8, Communication plug

Nil	Without cable
1	1.5 m
3	$3 \mathrm{~m}^{* 9}$
5	$5 \mathrm{~m}^{* 9}$

\section*{(12) Controller/Driver mounting
 | Nil | Screw mounting |
| :---: | :---: |
| \mathbf{D} | DIN rail*10 |}

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 The mounting bracket is shipped together with the product but does not come assembled.
*3 For the horizontal cantilever mounting of the rod flange or ends tapped types, use the actuator within the following stroke range. LEY25: 200 mm or less .LEY32/40: 100 mm or less
*4 The head flange type is not available for the LEY32/40.
*5 Produced upon receipt of order (Robotic cable only)
*6 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.
*7 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) separately after referring to page 1062.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.
*8 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*9 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*10 The DIN rail is not included. It must be ordered separately.
*11 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEY-X7 Series

Compatible Controllers/Drivers

| | Step data
 input type | Step data
 input type | Programless type | Pulse input type |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type | | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIPri direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNetIIPTM direct input with STO sub.function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Step Motor（Servo／24 VDC）

Model					LEY25 \square－X7			LEY32 \square－X7			LEY40 \square－X7		
	Work load＊${ }^{* 1}$ ［kg］		For JXC $\square 1$ ， $J X C \square F$, LECP1	（3000［mm／s $\left.{ }^{2}\right]$ ）	20	40	60	30	45	60	50	60	80
				（2000［mm／s $\left.{ }^{2}\right]$ ）	30	55	70	40	60	80	60	70	90
			For LECPA $J X C \square_{3}^{2}$	（ 3000 ［ $\mathrm{mm} / \mathrm{s}^{2} \mathrm{]}$ ）	12	30	30	20	40	40	30	60	60
				（2000［mm／s $\left.{ }^{2}\right]$ ）	18	50	50	30	60	60	－	－	－
			Vertical	（ 3000 ［mm／s $\left.{ }^{2}\right]$ ）	7	15	29	10	21	42	12	26	52
	Pushing force［ N ］ 2 ＊3＊4				63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
	Speed［mm／s	］${ }^{* 4}$			18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100	24 to 400	12 to 230	6 to 110
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］				3000								
	Pushing speed［mm／s］＊5				35 or less			30 or less			30 or less		
	Positioning repeatability［mm］				± 0.02								
	Lost motion［mm］${ }^{* 6}$				0.1 or less								
	Screw lead［mm］				12	6	3	16	8	4	16	8	4
	Impact／Vibration resistance［m／s ${ }^{\mathbf{2}}{ }^{*}{ }^{\text {7 }}$				50／20								
	Actuation type				Ball screw（LEY $\square \mathrm{D}$ ）								
	Guide type				Sliding bushing（Piston rod）								
	Enclosure＊8				IP65 equivalent／IP67 equivalent								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］				5 to 40								
	Operating humidity range［\％RH］				90 or less（No condensation）								
	Motor size				$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type				Step motor（Servo／24 VDC）								
	Encoder				Incremental								
	Power supply voltage［V］				24 VDC $\pm 10 \%$								
	Power［W］＊9＊11				Max．power 48			Max．power 104			Max．power 106		
－	Type＊10				Non－magnetizing lock								
管	Holding force［ N ］				78	157	294	108	216	421	127	265	519
容	Power［W］＊11				5			5			5		
$\stackrel{\text { c }}{ }$	Rated voltage［V］				24 VDC $\pm 10 \%$								

＊1 Horizontal：The max．value of the work load．An external guide is necessary to support the load．（Friction coefficient of guide： 0.1 or less）The actual work load and transfer speed change according to the condition of the external guide．Also，speed changes according to the work load． Check the＂Model Selection＂on pages 897 and 898.
Vertical：Speed changes according to the work load．Check the＂Model Selection＂on pages 897 and 898.
The values shown in（ ）are the acceleration／deceleration．Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less．
＊2 Pushing force accuracy is $\pm 20 \%$（F．S．）．
＊3 The thrust setting values for LEY25 \square are 38% to 65% ，for LEY32 \square are 38% to 85% ，and for LEY40 \square are 35% to 65% ．The pushing force values change according to the duty ratio and pushing speed．Check the＂Model Selection＂on page 900.
＊4 The speed and force may change depending on the cable length，load，and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20% ）
＊5 The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or less．
＊6 A reference value for correcting errors in reciprocal operation
＊7 Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．The test was performed in both an axial direction and a perpendicular direction to the lead screw．（The test was performed with the actuator in the initial state．）
＊8 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures．For details on enclosure，refer to the＂Enclosure＂on page 881.
＊9 Indicates the max．power during operation（including the controller）．This value can be used for the selection of the power supply．
＊10 With lock only
＊11 For an actuator with lock，add the power for the lock．

Specifications

Model				LEY25 \square A-X7		
Actuator specifications	Work load*1 [kg]	Horizontal	(3000 [mm/s $\left.{ }^{\text {2 }}\right]$)	7	15	30
		Vertical	(3000 [mm/s $\left.{ }^{2}\right]$)	2	5	11
	Pushing force [N$]^{* 2 * 3}$			18 to 35	37 to 72	66 to 130
	Speed [mm/s]			2 to 300	1 to 150	1 to 75
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000		
	Pushing speed [mm/s]*4			35 or less		
	Positioning repeatability [mm]			± 0.02		
	Lost motion [mm]*5			0.1 or less		
	Screw lead [mm]			12	6	3
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20		
	Actuation type			Ball screw + Belt (LEY \square) Ball screw (LEY $\square \mathrm{D}$)		
	Guide type			Sliding bushing (Piston rod)		
	Enclosure*7			IP65 equivalent/IP67 equivalent		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Motor size			$\square 42$		
	Motor type			Servo motor (24 VDC)		
	Encoder			Incremental		
	Power supply voltage [V]			24 VDC $\pm 10 \%$		
	Power [W]*8*10			Max. power 96		
	Type*9			Non-magnetizing lock		
	Holding force [N]			78	157	294
	Power [W]*10			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$		

*1 Horizontal: The max. value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide. Vertical: Speed changes according to the work load. Check the "Model Selection" on page 899.
The values shown in () are the acceleration/deceleration. Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY25A \square are 75% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 900.
*4 The allowable speed for pushing operation
When push conveying a workpiece, operate at the vertical work load or less.
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 881.
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.

Weight

Weight: In-line Motor Type

LEY25D										
Stroke		30	50	100	150	200	250	300	350	400
Product weight [kg]	Step motor	1.49	1.56	1.73	1.98	2.16	2.33	2.51	2.68	2.86
	Servo motor	1.45	1.52	1.69	1.94	2.12	2.29	2.47	2.64	2.82

LEY32D												
Stroke		30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	2.59	2.70	2.99	3.37	3.66	3.95	4.23	4.52	4.81	5.09	5.38

LEY40D												
Stroke		30	50	100	150	200	250	300	350	400	450	500
Product weight [kg]	Step motor	2.94	3.05	3.34	3.72	4.01	4.30	4.58	4.87	5.16	5.44	5.73

Additional Weight

Additional Weight			
Size		$\mathbf{2 5}$	$\mathbf{3 2}$
$\mathbf{\| l n g}]$			
Lock	0.33	0.63	0.63
Rod end male thread	Male thread	0.03	0.03
	Nut	0.03	
Foot bracket (2 sets including mounting bolt)	0.08	0.02	0.02
Rod flange (including mounting bolt)	0.14	0.14	
Head flange (including mounting bolt)		0.17	0.20

Construction
In-line motor type: LEY ${ }_{40}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	Anodized
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Resin	
9	Socket	Stainless steel	
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
13	Magnet	-	
$\mathbf{1 4}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 5}$	Wear ring	Resin	Stroke 101 mm or more
$\mathbf{1 6}$	Greater water resistant scraper	Stainless steel/NBR	

No.	Description	Material	Note
$\mathbf{1 7}$	Retaining ring	Stainless steel	
$\mathbf{1 8}$	Motor	-	
$\mathbf{1 9}$	Lube-retainer	Felt	
$\mathbf{2 0}$	O-ring	NBR	
$\mathbf{2 1}$	Gasket	Chloroprene	
$\mathbf{2 2}$	Motor adapter	Aluminum alloy	LEY25 only
$\mathbf{2 3}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{2 4}$	Seal connector	-	
25	End cover	Aluminum alloy	Anodized
$\mathbf{2 6}$	Hub	Aluminum alloy	
$\mathbf{2 7}$	Spider	NBR	
$\mathbf{2 8}$	Motor block	Aluminum alloy	Anodized
29	Seal washer	Stainless steel/NBR	
$\mathbf{3 0}$	Socket (Male thread)	Stainless steel	
$\mathbf{3 1}$	Nut	Stainless steel	

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

* Apply grease to the piston rod periodically.

Grease should be applied when 1 million cycles or 200 km have been reached, whichever comes first.

LEY-X7 Series

Incremental (Step Motor 24 VDC)
Incremental (Servo Motor 24 VDC)
Dust-tight/Water-jet-proof (IP65 Equivalent/IP67 Equivalent)

Dimensions

Rod end male thread: LEY32D $\square-\square \square$ M

Size	B1	C_{1}	D	H_{1}	L1	L2	MM
25	22	20.5	20	8	38	23.5	M14 $\times 1.5$
32/40	22	20.5	25	8	42	23.5	M14 $\times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.

Size	Stroke range [mm]	A		B	C	D	EH	EV	FH	FV	G	H		J	K	L	M	
		Without lock	With lock															
25	30 to 100	259	309	89.5	13	20	44	45.5	57.6	57.7	94.7	M8 x 1.25		24	17	14.5	34	
	105 to 400	284	334	114.5														
32	30 to 100	269.5	319.5	96	13	25	51	56.5	69.6	79.6	116.6	6 M8 x 1.25		31	22	18.5	40	
	105 to 500	299.5	349.5	126														
40	30 to 100	291.5	341.5	96	13	25	51	56.5	69.6	79.6	116.6	M8 x 1.25		31	22	18.5	40	
	105 to 500	321.5	371.5	126														
Size	Stroke range [mm]	O_{1}	R	OA	OB	PA	PB	PC	PD	Q	U	W			Y1	Y2	Y3	
												Without lock						
25	30 to 100	M5 x 0.8	8	37	38	15.4	8.2	15.9	6.5	31.5	0.9	155	205		28	71	19	
	105 to 400														96			
32	30 to 100	M6 x 1.0	10	37	38	15.4	8.2	15.9	7.1	31.5	1	155	205			30	75.5	16
	105 to 500														105.5			
40	30 to 100	M6 x 1.0	10	37	38	15.4	8.2	15.9	7.1	31.5	1	177	227		30	75.5	16	
	105 to 500														105.5			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	30 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32/40	30 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			43						
	101 to 124		36			80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^4]
LEY-X7 Series
 Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch: D-M9 \square A(V)

LEY25, 32
\Rightarrow Switch mounting groove

Size	Stroke range	Auto switch position				Return to origin distance E	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D		-
25	15 to 100	27	62.5	39	50.5	(2)	4.2
	105 to 400	52		64			
32/40	20 to 100	30.5	85.5	42.5	53.5	(2)	4.9
	105 to 500	90.5		102.5			

* The values in the table above are to be used as a reference when mounting auto switches for stroke end detection. Adjust the auto switch after confirming the operating conditions in the actual setting.
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approx. $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Tightening Torque for Auto Switch Mounting Screw
[$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square \mathbf{A}(\mathbf{V})$	0.05 to 0.10

* When tightening the auto switch mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V)

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red) - Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please contact SMC if using coolant liquid other than water based solution.

Weight

Auto switch model			D-M9NA(V)
D-M9PA(V)	D-M9BA(V)		
Lead	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7
	$1 \mathrm{~m}(\mathbf{M})$	14	13
	$3 \mathrm{~m}(\mathbf{L})$	41	38
	$5 \mathrm{~m} \mathrm{(Z)}$	68	63

PLC: Programmable Logic Controller						
D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	elay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NAD	D-M9NAV \square D-M9PA \square D	D-M9PAV]	D-M9BA	D-M9BAV \square
Sheath	Outside diameter [mm]	ø2.6				
Insulator	Number of cores	3 cores (Brown/Blue/Black)			2 cores (Brown/Blue)	
	Outside diameter [mm]	$\varnothing 0.88$				
Conductor	Effective area [mm^{2}]	0.15				
	Strand diameter [mm]	$\varnothing 0.05$				
Min. bending radius [mm]		17				

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Dimensions

D-M9 $\square A$

D-M9 \square AV

Environment

LEY-X5 (Made to Order)

LEY63 $\square \square \square-\square \mathbf{P}$

*1 IP65 enclosure: The protection structure against solid foreign objects is dust-tight type and the protection structure against water is water-jet-proof type. Dust-tight means that no dust can enter the inside of the equipment.
Water-jet-proof means that the product is not adversely affected by direct water jets from any direction. That is, even when direct water jets are applied to the product for 3 minutes by means of the pre-determined method, there is no water entry that hinders the correct operation inside the equipment. Be sure to take appropriate protective measures if the product is to be used in an environment where it will be constantly exposed to water or fluids other than water splash. In particular, the product cannot be used in environments where oils, such as cutting oil or cutting fluid, are present.

LEY-X5 (Made to Order)

```
Size 25,32
```

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)
917

LEY-X5 Series $>$ p. 917

Refer to page 914 for the LECPA, JXC \square_{3}^{2}, and LECA6.

Speed-Work Load Graph (Guide)

For Step Motor (Servo/24 VDC) JXC $\square 1$, LECP1

Horizontal

LEY25 $\square-X 5 \quad \square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY32 \square-X5
$\nabla \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical
LEY25 \square-X5

LEY32 \square-X5

Graph of Allowable Lateral Load on the Rod End (Guide)

Rod Displacement: δ [mm]

Stroke Size	30	50	100	150	200	250	300	350	400	450	500	$+$	
25	± 0.3	± 0.4	± 0.7	± 0.7	± 0.9	± 1.1	± 1.3	± 1.5	± 1.7	-	-		-------1.0-1
32	± 0.3	± 0.4	± 0.7	± 0.6	± 0.8	± 1.0	± 1.1	± 1.3	± 1.5	± 1.7	± 1.8		

[^5]913

For Step Motor (Servo/24 VDC) LECPA, JXC \square_{3}^{2}

Horizontal

LEY32 $\square-X 5$ $\square \backslash$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

Vertical

LEY25 \square-X5

LEY32 \square-X5

For Servo Motor (24 VDC) LECA6

Horizontal
LEY25 \square A-X5

Vertical

LEY25 \square A-X5

Force Conversion Graph

Step Motor (Servo/24 VDC)

LEY25 $\square-X 5$

Ambient temperature	Pushing force set value [\%]	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{4 0} \mathbf{C}$ or less	65 or less	100	No restriction

LEY32 $\square-X 5$

Ambient temperature	Pushing force set value*1 $[\%]$	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	No restriction
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$	65 or less	100	No restriction
	85	50	15 or less

Non-rotating Accuracy of Rod

Size	Non-rotating accuracy θ
$\mathbf{2 5}$	$\pm 0.8^{\circ}$
$\mathbf{3 2}$	$\pm 0.7^{\circ}$

* Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod.
Failure to do so may result in the deformation of the non-rotating guide, abnormal auto switch responses, play in the internal guide, or an increase in the sliding resistance.

Servo Motor (24 VDC)

LEY25 $\square A-X 5$

Ambient temperature	Pushing force set value*1 $[\%]$	Duty ratio $[\%]$	Continuous pushing time $[\mathrm{min}]$
$\mathbf{4 0}^{\circ} \mathbf{C}$ or less	95 or less	100	No restriction

<Limit Values for Pushing Force and Trigger Level in Relation to Pushing Speed>
Without Load

Model	Lead	Pusting speed [mms]	Pushing force (Setting input value)	Model	Lead	Pusting speed [mms]	Pusting force (Setting inputvaue)
LEY25	A/B/C	21 to 35	50 to 65\%	LEY25■A	A/B/C	21 to 35	80 to 95%
LEY32	A	24 to 30	60 to 85\%				
	B/C	21 to 30					

There is a limit to the pushing force in relation to the pushing speed. If the product is operated outside of the range (low pushing force), the completion signal [INP] may be output before the pushing operation has been completed (during the moving operation).
If operating with the pushing speed below the min. speed, please check for operating problems before using the product.
<Set Values for Vertical Upward Transfer Pushing Operations>
For vertical loads (upward), set the pushing force to the max. value shown below and operate at the work load or less.

Model	LEY25 \square			LEY32 \square			LEY25 \square A					
Lead	A	B	C	A	B	C	A	B	C			
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	1.2	2.5	5			
Pushing force	65%				85%				95%			

[^6]
LEY-X5 (Made to Order) Series LEv25,32

Refer to pages 913 to 915 for model selection.

How to Order

4 Lead [mm]

Symbol	LEY25	LEY32
A	12	16
B	6	8
C	3	4

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

(5) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

8 Mounting*3

Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/Body bottom tapped*4	\bullet	\bullet
\mathbf{L}	Foot bracket	\bullet	-
\mathbf{F}	Rod flange*4	$\bullet * 5$	\bullet
\mathbf{G}	Head flange $^{* 4}$	$\bullet^{* 6}$	-

(6) Motor option*2

$\mathbf{N i l}$	Without option	
\mathbf{B}	With lock	
\begin{tabular}{\|c	}	
\hline		
\end{tabular}		
	Motor	

(9) Actuator cable type/length

Robotic cable						[m]		
R1	1.5	RA	$10 * 7$					

R1	1.5	RA	10*7
R3	3	RB	15*7
R5	5	RC	20*7
R8	8*7		

Applicable Stroke Table* ${ }^{* 1}$

- Standard

$\underbrace{}_{\text {Model }} \quad$Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range
LEY25	\bullet	\bullet	-	-	-	-	-	-	-	-	-	15 to 400
LEY32	\bullet	-	-	\bullet	-	\bullet	\bullet	-	-	\bullet	\bullet	20 to 500

Symbol	Type	Applicable interface
Nil	Without accessory	-
\mathbf{S}	Straight type communication plug connector	DeviceNet ${ }^{\circledR}$
\mathbf{T}	T-branch type communication plug connector	CC-Link Ver. 1.10
$\mathbf{1}$	I/O cable (1.5 m)	Parallel input (NPN)
$\mathbf{3}$	I/O cable $(3 \mathrm{~m})$	
$\mathbf{5}$	I/O cable $(5 \mathrm{~m})$	

Symbol	Number of axes	Specification
$\mathbf{1}$	Single axis	Standard
F	Single axis	With STO sub-function

$L E C \square$ Series (For details, refer to page 919.)

10 Controller/Driver type*8

Nil	Without controller/driver	
6N	LECA6	NPN
6P	(Step data input type)	PNP
1N	LECP1*9	NPN
1P	(Programless type)	PNP
AN	LECPA*9 *10	NPN
AP	(Pulse input type)	PNP

11 I/O cable length*11

Nil	Without cable
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 12}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 12}$

12 Controller/Driver mounting

Nil	Screw mounting
\mathbf{D}	DIN rail ${ }^{* 13}$

*1 Please contact SMC for non-standard strokes as they are produced as special orders.
*2 When "With lock" is selected for the top side parallel motor type, the motor body will stick out from the end of the body for strokes of 50 mm or less. Check for interference with workpieces before selecting a model.
*3 The mounting bracket is shipped together with the product but does not come assembled.
*4 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range. -LEY25: 200 mm or less • LEY32: 100 mm or less
*5 The rod flange type is not available for the LEY25/32 with strokes of 50 mm or less and motor option "With lock."
*6 The head flange type is not available for the LEY32.
*7 Produced upon receipt of order (Robotic cable only)
*8 For details on controllers/drivers and compatible motors, refer to the compatible controllers/drivers on the next page.

\triangle Caution

[CE/UKCA-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEY series and the controller LEC/JXC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, compliance with the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify compliance with the EMC directive for the machinery and equipment as a whole.
(2) For the incremental (servo motor 24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA). Refer to page 1037 for the noise filter set. Refer to the LECA series Operation Manual for installation.
*9 Only available for the motor type "Step motor"
*10 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 1062 separately.
*11 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 1037 (For LECA6), page 1047 (For LECP1), or page 1062 (For LECPA) if an I/O cable is required.
*12 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector
*13 The DIN rail is not included. It must be ordered separately.
*14 Select "Nil" for anything other than DeviceNet ${ }^{\circledR}$, CC-Link, or parallel input.
Select "Nil," "S," or "T" for DeviceNet ${ }^{\circledR}$ or CC-Link.
Select "Nil," "1," "3," or " 5 " for parallel input.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and actuator is correct.

<Check the following before use.>

(1) Check the actuator label for the model number. This number should match that of the controller/driver.
(2) Check that the Parallel I/O configuration matches (NPN or PNP).

* Refer to the Operation Manual for using the products. Please download it via our website: https://www.smcworld.com

LEY-X5 Series

Incremental (Step Motor 24 VDC)

Compatible Controllers/Drivers

| | Step data
 input type | Step data
 input type | Programless type | Pulse input type |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type | | | | |

Type	EtherCAT direct input type	EtherCAT direct input type with STO sub-function	EtherNet//PTM direct input type	EtherNetIPri direct input type with STO sub-function	PROFINET direct input type	PROFINET direct input type with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input type	IO-Link direct input type	IO-Link direct input type with STO sub-function	CC-Link direct input type
Series	JXCE1	JXCEF	JXC91	JXC9F	JXCP1	JXCPF	JXCD1	JXCL1	JXCLF	JXCM1
Features	EtherCAT direct input	EtherCAT direct input with STO sub-function	EtherNet//PTM direct input	EtherNetIIPTM direct input with STO sub.function	PROFINET direct input	PROFINET direct input with STO sub-function	DeviceNet ${ }^{\circledR}$ direct input	IO-Link direct input	IO-Link direct input with STO sub-function	CC-Link direct input
Compatible motor	Step motor (Servo/24 VDC)									
Max. number of step data	64 points									
Power supply voltage	24 VDC									
Reference page	1063									

Specifications

Step Motor (Servo/24 VDC)

Model					LEY25 \square-X5			LEY32 \square-X5		
	Work load [kg] ${ }^{* 1}$			(3000 [mm/s ${ }^{2}$])	20	40	60	30	45	60
				(2000 [mm/s ${ }^{2}$])	30	60	70	40	60	80
				(3000 [mm/s $\left.{ }^{2}\right]$)	12	30	30	20	40	40
				(2000 [mm/s ${ }^{2}$])	18	50	50	30	60	60
			rtical** ${ }^{* 12}$	(3000 [mm/s ${ }^{2}{ }^{\text {] }}$)	7	15	29	10	21	42
	Pushing force [N$]^{* 2 * 3 * 4}$				63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707
	Speed [mm/s] ${ }^{* 4}$				18 to 400	9 to 200	5 to 100	24 to 400	12 to 200	6 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				3000					
	Pushing speed [mm/s]*5				35 or less			30 or less		
	Positioning repeatability [mm]				± 0.02					
	Lost motion [mm]*6				0.1 or less					
	Screw lead [mm]				12	6	3	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 7}$				50/20					
	Actuation type				Ball screw + Belt (LEY \square) Ball screw (LEY $\square D)$					
	Guide type				Sliding bushing (Piston rod)					
	Enclosure*8				IP65 equivalent					
	Operating temperature range [${ }^{\mathrm{C}}$]				5 to 40					
	Operating humidity range [\%RH]				90 or less (No condensation)					
	Motor size				$\square 42$			$\square 56.4$		
毞	Motor type				Step motor (Servo/24 VDC)					
$\frac{\overline{0}}{\mathrm{o}}$	Encoder				Incremental					
른	Power supply voltage [V]				24 VDC $\pm 10 \%$					
$\begin{array}{\|c\|} \hline \ddot{4} \\ \hline \end{array}$	Power [W]*9 *11				Max. power 48			Max. power 104		
	Type*10				Non-magnetizing lock					
	Holding force [N]				78	157	294	108	216	421
	Power [W]*11				5			5		
	Rated voltage [V]				24 VDC $\pm 10 \%$					

*1 Horizontal: The max. value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check the "Model Selection" on pages 913 and 914.
Vertical: Speed changes according to the work load. Check the "Model Selection" on pages 913 and 914.
The values shown in () are the acceleration/deceleration. Set these values to be 3000 [$\mathrm{mm} / \mathrm{s}^{2}$] or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY25 \square are 38% to 65% and for LEY32 \square are 38% to 85%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 915.
*4 The speed and force may change depending on the cable length, load, and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20\%)
*5 The allowable speed for pushing operations. When push conveying a workpiece, operate at the vertical work load or less.
*6 A reference value for correcting errors in reciprocal operation
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*8 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 881
*9 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*10 With lock only
*11 For an actuator with lock, add the power for the lock.
*12 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.

Specifications

Servo Motor (24 VDC)

Model				LEY25 \square A-X5		
Actuator specifications	Work load [kg]* ${ }^{*}$	Horizontal	(3000 [$\mathrm{mm} / \mathrm{s}^{2} \mathrm{]}$)	7	15	30
		Vertical ${ }^{* 11}$	(3000 [mm/s ${ }^{2}$])	2	5	11
	Pushing force [N]*2*3			18 to 35	37 to 72	66 to 130
	Speed [mm/s]			2 to 400	1 to 200	1 to 100
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			3000		
	Pushing speed [mm/s]*4			35 or less		
	Positioning repeatability [mm]			± 0.02		
	Lost motion [mm]*5			0.1 or less		
	Screw lead [mm]			12	6	3
	Impact/Vibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{* 6}$			50/20		
	Actuation type			Ball screw + Belt (LEY \square) Ball screw (LEY $\square \mathrm{D}$)		
	Guide type			Sliding bushing (Piston rod)		
	Enclosure*7			IP65 equivalent		
	Operating temperature range [${ }^{\mathbf{C}}$]			5 to 40		
	Operating humidity range [\%RH]			90 or less (No condensation)		
	Motor size			$\square 42$		
	Motor type			Servo motor (24 VDC)		
	Encoder			Incremental		
	Power supply voltage [V]			24 VDC $\pm 10 \%$		
	Power [W]*8*10			Max. power 96		
$\stackrel{0}{6}$	Type*9			Non-magnetizing lock		
	Holding force [N]			78	157	294
	Power [W]*10			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$		

*1 Horizontal: The max. value of the work load. An external guide is necessary to support the load. (Friction coefficient of guide: 0.1 or less) The actual work load and transfer speed change according to the condition of the external guide.
Vertical: Speed changes according to the work load. Check the "Model Selection" on page 914. The values shown in () are the acceleration/ deceleration.
Set these values to be 3000 [$\left.\mathrm{mm} / \mathrm{s}^{2}\right]$ or less.
*2 Pushing force accuracy is $\pm 20 \%$ (F.S.).
*3 The thrust setting values for LEY25A \square are 75% to 95%. The pushing force values change according to the duty ratio and pushing speed. Check the "Model Selection" on page 915.
*4 The allowable speed for pushing operations
When push conveying a workpiece, operate at the vertical work load or less.
*5 A reference value for correcting errors in reciprocal operation
*6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 881.
*8 Indicates the max. power during operation (including the controller). This value can be used for the selection of the power supply.
*9 With lock only
*10 For an actuator with lock, add the power for the lock.
*11 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.

Weight

Weight: Top Side Parallel Motor Type

	Model	LEY25-X5									LEY32-X5										
Stroke [mm]		30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.45	1.52	1.69	1.95	2.13	2.30	2.48	2.65	2.83	2.48	2.59	2.88	3.35	3.64	3.91	4.21	4.49	4.76	5.04	5.32
weight [kg]	Servo motor	1.41	1.48	1.65	1.91	2.09	2.26	2.44	2.61	2.79	-	-	-	-	-	-	-	-	-	-	-

Weight: In-line Motor Type

	Model	LEY25D-X5									LEY32D-X5										
Stroke [m	mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	1.46	1.53	1.70	1.96	2.14	2.31	2.49	2.66	2.84	2.49	2.60	2.89	3.36	3.65	3.92	4.22	4.50	4.77	5.05	5.33
weight [kg]	Servo motor	1.42	1.49	1.66	1.92	2.10	2.27	2.45	2.62	2.80	-	-	-	-	-	-	-	-	-	-	-

Additional Weight
${ }^{[k g]}$

Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	0.33	0.63	
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			

Construction

Top side parallel motor type: LEY ${ }_{32}^{25}$

In-line motor type: LEY ${ }_{32}^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Ball screw shaft	Alloy steel	
3	Ball screw nut	Synthetic resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Bearing holder	Aluminum alloy	
8	Rotation stopper	Synthetic resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Bearing alloy	
12	Bearing	-	
13	Return box	Aluminum die-cast	Coating
14	Return plate	Aluminum die-cast	Coating
15	Magnet	-	
16	Wear ring holder	Stainless steel	Stroke 101 mm or more
17	Wear ring	Synthetic resin	Stroke 101 mm or more
18	Screw shaft pulley	Aluminum alloy	
19	Motor pulley	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{2 0}$	Belt	-	
$\mathbf{2 1}$	Scraper	Synthetic resin	
$\mathbf{2 2}$	Retaining ring	Steel for spring	Phosphate coating
$\mathbf{2 3}$	Motor	-	
$\mathbf{2 4}$	Lube-retainer	Felt	
$\mathbf{2 5}$	O-ring	NBR	
$\mathbf{2 6}$	Gasket	NBR	
$\mathbf{2 7}$	Motor adapter	Aluminum alloy	Anodized
$\mathbf{2 8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{2 9}$	Seal connector	-	
$\mathbf{3 0}$	End cover	Aluminum alloy	Anodized
$\mathbf{3 1}$	Hub	Aluminum alloy	
$\mathbf{3 2}$	Spider	NBR	
$\mathbf{3 3}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 4}$	Motor adapter	Aluminum alloy	LEY25 only
$\mathbf{3 5}$	Socket (Male thread)	Free cutting carbon steel	Nickel plating
$\mathbf{3 6}$	Nut	Alloy steel	Zinc chromating

Replacement Parts (Top side parallel only)/Belt

No.	Size	Order no.
20	25	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-3

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

* Apply grease to the piston rod periodically.

Grease should be applied when 1 million cycles or 200 km have been reached, whichever comes first.

LEY-X5 Series

Dimensions

Top side parallel motor type

Section XX details

Size	B1	C 1	D	H_{1}	L1	L2	MM
25	22	20.5	20	8	38	23.5	M14 $\times 1.5$
32/40	22	20.5	25	8	42	23.5	M14 $\times 1.5$

* The L_{1} measurement is when the unit is in the original position. At this position, 2 mm at the end.
[mm]

Size	Stroke range [mm]	A	B		D	EH	EV	FH	FV	GH	GV	H		J	K	L	M	O1		
25	15 to 100	130.5	116		20	44	45.5	57.6	56.8	66.2	139.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8		
	101 to 400	155.5	141																	
32	20 to 100	148.5	130	13	25	51	56.5	69.6	78.6	76.2	173.5	M8 x 1.25		31	22	18.5	40	M6 x 1.0		
	101 to 500	178.5	160																	
Size	Stroke range [mm]	R	OA	OB	PA	PB	Q	S	T	U	PC	W			X			Y		
												Without lock	With	lock	Without lock		lock			
25	15 to 100	8	37	38	15.4	8.2	28	46	92	1	15.4	123	173		145	195		51		
	101 to 400																			
32	20 to 100	10	37	38	15.4	8.2	28	60	118	1	15.9	123	173		150	200		61		
	101 to 500																			

Body Bottom Tapped [mm]

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^7]
Dimensions

In-line motor type

Size	Stroke range [mm]	A		B	C	D	EH	EV	FH	FV	G	H	J	K	L
		Without lock	With lock												
25	15 to 100	250	300	89.5	13	20	44	45.5	57.6	57.7	94.7	M8 x 1.25	24	17	14.5
	101 to 400	275	325	114.5											
32	20 to 100	265.5	315.5	96	13	25	51	56.5	69.6	79.6	116.6	M8 $\times 1.25$	31	22	18.5
	101 to 500	295.5	345.5	126											

Size	Stroke range [mm]	M	O1	R	OA	OB	PA	PB	Q	U	PC	W		Y
												Without lock	With lock	
25	15 to 100	34	M5 x 0.8	8	37	38	15.4	8.2	28	0.9	15.9	146	196	24.5
	101 to 400													
32	20 to 100	40	M6 x 1.0	10	37	38	15.4	8.2	28	1	15.9	151	201	27
	101 to 500													

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^8]
How to Order

Dust-tight/
Water-jet-proof

(4) Motor type					
Symbol	Type	Output [W]	$\begin{gathered} 2 \\ \text { Size } \end{gathered}$	(12) Driver type	Compatible drivers
S2*1	AC servo motor(Incremental encoder)	100	25	A1/A2	LECSA■-S1
S3		200	32	A1/A2	LECSA■-S3
T6*2	AC servo motor (Absolute encoder)	100	25	B2	LECSB2-T5
				C2	LECSC2-T5
				S2	LECSS2-T5
T7		200	32	B2	LECSB2-T7
				C2	LECSC2-T7
				S2	LECSS2-T7

*1 For motor type S2, the compatible driver part number suffix is S 1 .
*2 For motor type T6, the compatible driver part number is LECS $\square 2$-T5.
5 Lead [mm]

Symbol	LEY25 \square	LEY32 $\square^{* 1}$
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

*1 The values shown in () are the equivalent leads which include the pulley ratio for the size 32 top side parallel motor type.

6 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.
7 Motor option

Nil	Without option
\mathbf{B}	With lock*1

*1 When "With lock" is selected for the top side parallel motor type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less. Check for interference with workpieces before selecting a model.

8 Rod end thread
$\mathbf{N i l}$
\mathbf{M}
:---:
$(1$ Rod end male thread nut is included.)

9 Mounting*1

Symbol	Type	Motor mounting position	
	Parallel	In-line	
Nil	Ends tapped/ Body bottom tapped	\bullet	\bullet
\mathbf{L}	Foot bracket	\bullet	-
\mathbf{F}	Rod flange ${ }^{* 2}$	$\bullet^{* 3}$	\bullet
\mathbf{G}	Head flange $^{* 2}$	$\bullet^{* 4}$	-

*1 The mounting bracket is shipped together with the product but does not come assembled.
*2 For the horizontal cantilever mounting of the rod flange, head flange, or ends tapped types, use the actuator within the following stroke range.
-LEY25: 200 mm or less
-LEY32: 100 mm or less
*3 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*4 The head flange type is not available for the LEY32.

Applicable Stroke Table

- Standard

Stroke Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY25	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	\bigcirc	-	-	15 to 400
LEY32	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	20 to 500

[^9]| 10 Cable type ${ }^{* 1 * 2}$ | |
| :---: | :---: |
| Nil | Without cable |
| S | Standard cable |
| R | Robotic cable |

*1 A motor cable and encoder cable are included with the product. (A lock cable is also included if motor option " B : With lock" is selected.)
*2 Standard cable entry direction is

- Top side parallel: (A) Axis side
- In-line: (B) Counter axis side
(Refer to page 1123 for details.)

13 I/O cable length [m]*

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected.
Refer to page 1124 if an I/O cable is required. (Options are shown on page 1124.)
11 Cable length [m]*1

Nil	Without cable
2	2
5	5
\mathbf{A}	10

*1 The length of the encoder, motor, and lock cables are the same.
12 Driver type*1

Nil	Compatible drivers	Power supply voltage [V]
A1	LECSA1-S \square	-
A2	LECSA2-S \square	200 to 120
B2	LECSB2-T \square	200 to 240
C2	LECSC2-T \square	200 to 230
S2	LECSS2-T \square	200 to 240

*1 When a driver type is selected, a cable is included.
Select the cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2: Standard cable (2 m)
Nil: Without cable and driver

Compatible Drivers

Driver type	Pulse input type/ Positioning type	Pulse input type	CC-Link direct input type	
Series	LECSA	LECSB-T	LECSC-T	LECSS-T
Number of point tables	Up to 7	Up to 255	Up to 255 (2 stations occupied)	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III/H
Control encoder	Incremental 17-bit encoder	Absolute 22-bit encoder	Absolute 18-bit encoder	Absolute 22-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communicaion, RS422 communicaion	USB communication
Power supply voltage [V]	$\begin{aligned} & 100 \text { to } 120 \mathrm{VAC} \\ & (50 / 60 \mathrm{~Hz}) \\ & 20 \mathrm{to} 230 \mathrm{VAC} \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 200 \text { to } 240 \text { VAC } \\ & (50 / 60 \mathrm{~Hz}) \end{aligned}$
Reference page	1109			

Specifications: LECSA

Model				LEY25S2/T6-X5 /LEY25DS2/T6-X5			LEY32S3/T7-X5 (Parallel)			LEY32DS3/T7-X5 (In-line)		
	Work load [kg]	Horizontal* ${ }^{*}$		18	50	50	30	60	60	30	60	60
		Vertical*8		8	16	30	9	19	37	12	24	46
	Force [N]*2 (Set value: 15 to 30\%)*12			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]*3	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s] ${ }^{* 4}$			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High-precision type	± 0.01								
	Lost motion [mm]*5		Basic type	0.1 or less								
			High-precision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	Impact/Vibration resistance [m/s $\left.{ }^{2}\right]^{* 6}$			50/20			50/20					
	Actuation type			Ball screw + Belt/Ball screw			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Enclosure*7			IP65 equivalent								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Regeneration option			May be required depending on speed and work load (Refer to pages 435 and 436.)								
	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
	Encoder*11			Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type T6, T7: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$) (For LECSB-T \square, LECSS-T \square) Motor type T6, T7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$) (For LECSC-TD)								
	Power [W]*9			Max. power 445			Max. power 724			Max. power 724		
	Type*10			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power at $20^{\circ} \mathrm{C}$ [W]			6.3			7.9			7.9		
	Rated voltage [V]			24 VDC ${ }_{-10}^{0}$ \%								

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode. Set it while referencing the "Force Conversion Graph" on pages 437 and 438. The drivers applicable to the pushing operation are "LECSB-T" and "LECSS-T." The LECSB2-T is only applicable when the control method is positioning. The point table is used to set the pushing operation settings.
To set the pushing operation settings, an additional dedicated file (pushing operation extension file) must be downloaded separately to be used with the setup software (MR Configurator2TM: LECMRC2]). Please download this dedicated file from the SMC website: https://www.smcworld.com When selecting the LECSS or LECSS2-T, combine it with upper level equipment (such as the Simple Motion module manufactured by Mitsubishi Electric Corporation) which has a pushing operation function.
** For customer-provided PLC and motion controller setting and usage instructions, confirm with the retailer or manufacturer.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting errors in reciprocal operation

6 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)
*7 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 881.
*8 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
9 Indicates the max. power during operation (including the driver)
When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*10 Only when motor option "With lock" is selected
*11 The resolution will change depending on the driver type.
*12 For motor type T6 and T7, the set value is from 12 to 24%.

Weight

Product Weight																						
Series			LEY25S2/T6-X5 (Motor mounting position: Parallel)									LEY32S3/T7-X5 (Motor mounting position: Parallel)										
Stroke [mm]			30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
$\begin{aligned} & \text { ̀o } \\ & \frac{0}{2} \\ & \end{aligned}$	Incremental encoder		1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
	Absolute encoder	T6/T7	1.4	1.5	1.6	1.9	2.0	2.2	2.4	2.6	2.7	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2
Series			LEY25DS2/T6-X5 (Motor mounting position: In-line)									LEY32DS3/T7-X5 (Motor mounting position: In-line)										
Stroke [mm]			30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
	Incremental encoder		1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
	Absolute encoder	T6/T7	1.4	1.5	1.6	1.9	2.1	2.2	2.4	2.6	2.8	2.4	2.5	2.8	3.2	3.5	3.8	4.1	4.4	4.6	4.9	5.2

Additional Weight

Additional Weight		[kg]	
	Size	25	32
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting boit)		0.08	0.14
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)		0.17	0.20
Double clevis (including pin, retaining ring, and mounting bolt)		0.16	0.22

Construction
Top side parallel motor type: LEY ${ }_{32}^{25}$
In-line motor type: $\operatorname{LEY}_{32}{ }^{25} \mathrm{D}$

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Synthetic resin/Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
$\mathbf{5}$	Piston rod	Stainless steel	Hard chrome plating
$\mathbf{6}$	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Synthetic resin	
$\mathbf{9}$	Socket	Free cutting carbon steel	Nickel plating
$\mathbf{1 0}$	Connected shaft	Free cutting carbon steel	Nickel plating
$\mathbf{1 1}$	Bushing	Bearing alloy	
$\mathbf{1 2}$	Bearing	-	
$\mathbf{1 3}$	Return box	Aluminum die-cast	Coating
$\mathbf{1 4}$	Return plate	Aluminum die-cast	Coating
$\mathbf{1 5}$	Magnet	-	
$\mathbf{1 6}$	Wear ring holder	Stainless steel	Stroke 101 mm or more
$\mathbf{1 7}$	Wear ring	Synthetic resin	Stroke 101 mm or more

No.	Description	Material	Note
$\mathbf{1 8}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{1 9}$	Motor pulley	Aluminum alloy	
$\mathbf{2 0}$	Belt	-	
$\mathbf{2 1}$	Scraper	Synthetic resin	
$\mathbf{2 2}$	Retaining ring	Steel for spring	Phosphate coating
$\mathbf{2 3}$	Motor adapter	Aluminum alloy	Coating
$\mathbf{2 4}$	Motor	-	
$\mathbf{2 5}$	Lube-retainer	Felt	
26	O-ring	NBR	
27	Gasket	NBR	
28	O-ring	NBR	
29	Motor block	Aluminum alloy	Coating
30	Hub	Aluminum alloy	
31	Spider	Urethane	
32	Socket (Male thread)	Free cutting carbon steel	Nickel plating
33	Nut	Alloy steel	Trivalent chromating

Replacement Parts (Top side parallel only)/Belt		
No.	Size	Order no.
20	$\mathbf{2 5}$	LE-D-2-2
	$\mathbf{3 2}$	LE-D-2-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$ GR-S-020 $(20 \mathrm{~g})$

[^10]
LEY-X5 Series

Dimensions

Top side parallel motor type: LEY_{32}^{25}

Size	Stroke range [mm]	A	B	C	D	EH	EV	H		J	K	L	M	O1	R	PA	PB	V	S	T	U
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8	8	15.4	8.2	40	46	92	1
	101 to 400	155.5	141																		
32	20 to 100	148.5	130	13	25	51	56.5	M8 $\times 1.25$		31	22	18.5	40	M6 x 1.0	10	15.4	8.2	60	60	118	1
	101 to 500	178.5	160																		
Size	Stroke range [mm]	PC	Incremental encoder [S2/S3]						Absolute encoder [T6/T7]						Y						
			Without lock			With lock			Without lock			With lock									
			W	X	Z	W	X	Z	W	X	Z	W	X	Z							
25	15 to 100	15.4	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123	156	15.8	51						
	101 to 400																				
32	20 to 100	15.9	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	113.4	153.4	17.1	1						
	101 to 500																				

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41		50				
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	101 to 124			36	43		80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^11]For the mounting bracket dimensions, refer to the Web Catalog

Dimensions

In-line motor type: $\mathrm{LEY}_{32}^{25} \mathrm{D}$

Body Bottom Tapped
[mm]

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6x 1	8.5	5	6
	40 to 100		36	43		50				
	101 to 124		36	43		80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^12]

| 1 Accuracy |
| :---: | :---: |
| Nil Basic type
 H High-precision type |

2 Size
25
32

3 Motor mounting position

NiI	Top side parallel
D	In-line

4 Motor type

Symbol	Type	Output $[\mathrm{W}]$	2 Size	12 Driver type	Compatible drivers
$\mathbf{V 6 * 1}$	AC servo motor	100	25	M 2	LECYM2-V5
	(Absolute encoder)	200	32	U 2	LECYU2-V5
	V7			U 2	LECYM2-V7

*1 For motor type V6, the compatible driver part number suffix is V5.
5 Lead [mm]

Symbol	LEY25	LEY32
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the leads for the top side parallel motor type. (Equivalent leads which include the pulley ratio [1.25:1])

6) Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{5 0 0}$	500

* For details, refer to the applicable stroke table below.

7 Motor option

$\mathbf{N i l}$	Without option
\mathbf{B}	With lock

* When "With lock" is selected for the top side parallel motor type, the motor body will stick out from the end of the body for size 25 with strokes of 30 mm or less.
Check for interference with workpieces before selecting a model.

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

Applicable Stroke Table

[^13]
9 Mounting*1

Symbol	Type	Motor mounting position	
		Parallel	In-line
Nil	Ends tapped/ Body bottom tapped ${ }^{* 2}$	\bigcirc	\bigcirc
L	Foot bracket	-	-
F	Rod flange*2	*3	\bigcirc
G	Head flange*2	* ${ }^{\text {+ }}$	-

*1 The mounting bracket is shipped together with the product but does not come assembled
*2 For the horizontal cantilever mounting of the ends tapped, rod flange, or head flange types, use the actuator within the following stroke range.

- LEY25: 200 mm or less • LEY32: 100 mm or less
*3 The rod flange type is not available for the LEY25 with a 30 mm stroke and motor option "With lock."
*4 The head flange type is not available for the LEY32.

10 Cable type*1

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable

*1 A motor cable and encoder cable are included with the product.
The motor cable for lock option is included when the motor with lock option is selected.

11 Cable length [m]*1

$\mathbf{N i l}$	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
\mathbf{A}	10
\mathbf{C}	20

*1 The length of the motor and encoder cables are the same. (For with lock)

12 Driver type

	Compatible drivers	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

* When a driver type is selected, a cable is included. Select the cable type and cable length.

$13 \mathrm{I} / \mathrm{O}$ cable length $[\mathrm{m}]^{*}$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*1 When "Nil: Without driver" is selected for the driver type, only "Nil: Without cable" can be selected. Refer to page 1135 if an I/O cable is required. (Options are shown on page 1135.)

Compatible Drivers

Driver type	IM MECHATROLINK-II type	M MECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC (50/60 Hz)	
Reference page	1128	

Specifications: LECY

Model				LEY25V6-X5/LEY25DV6-X5			LEY32V7-X5 (Parallel)			LEY32DV7-X5 (In-line)		
	Work load [kg]		Horizonta**	18	50	50	30	60	60	30	60	60
			Vertical*9	8	16	30	9	19	37	12	24	46
	Force [$\mathrm{N}{ }^{* 2}$ (Set value: 45 to 90\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. speed [mm/s]	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
			305 to 400	600	300	150						
			405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [mm/s]*4			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			5000					
	Positioning repeatability [mm]		Basic type	± 0.02			± 0.02					
			High-rrecision type	± 0.01			± 0.01					
	Lost motion [mm]*5		Basic type	0.1 or less			0.1 or less					
			High-rrecision type	0.05 or less			0.05 or less					
	Lead [mm] (including pulley ratio)			12	6	3	20*6	10*6	5*6	16	8	4
	Impact/Vibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{* 7}$			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEY $\square \mathrm{D}$)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Enclosure*8			IP65 equivalent								
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Required conditions for the Horizontal regenerative resistor* ${ }^{* 10}[\mathrm{~kg}]$ Vertical			Not required			Not required					
				6 or more			4 or more					
은	Motor output/Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor (200 VAC)			AC servo motor (200 VAC)					
	Encoder			Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)								
	Power [W]*11			Max. power 445			Max. power 724			Max. power 724		
	Type*12			Non-magnetizing lock								
	Holding force [N]			131	255	485	157	308	588	197	385	736
	Power at $20^{\circ} \mathrm{C}$ [W]			5.5			6			6		
	Rated voltage [V]			$24 \mathrm{VDC}^{+10 \%}$								

*1 This is the max. value of the horizontal work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load changes according to the condition of the external guide. Confirm the load using the actual device.
*2 The force setting range (set values for the driver) for the force control with the torque control mode
Set it while referencing the "Force Conversion Graph (Guide)" on page 445.
*3 The allowable speed changes according to the stroke.
*4 The allowable collision speed for collision with the workpiece with the torque control mode
*5 A reference value for correcting errors in reciprocal operation
*6 Equivalent leads which include the pulley ratio [1.25:1]
*7 Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . The test was performed in both an axial direction and a perpendicular direction to the lead screw. (The test was performed with the actuator in the initial state.)

8 Cannot be used in an environment where oil such as cutting oil splashes or it is constantly exposed to water
Take appropriate protective measures. For details on enclosure, refer to the "Enclosure" on page 881.
*9 When mounting vertically and using the product facing upwards in an environment where water is present, take necessary measures to prevent water from splashing on the rod cover, because water will accumulate on the rod seal due to the structure of the product.
*10 The work load conditions which require the regenerative resistor when operating at the max. speed (Duty ratio: 100%). Order the regenerative resistor separately. For details, refer to the "Required Conditions for the Regenerative Resistor (Guide)" on pages 443 and 444.
*11 Indicates the max. power during operation (including the driver) When selecting the power supply capacity, refer to the power supply capacity in the operation manual of each driver.
*12 Only when motor option "With lock" is selected

Weight

																				[kg]
Series		25 V	(Mo	or m			ition	Para				Y32V	(Mo	or m	unti	g po	ition	Para		
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.6	1.7	1.9	2.1	2.2	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.0	4.3	4.6	4.9	5.2
Series	LEY25DV6 (Motor mounting position: In-line)									LEY32DV7 (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Weight [kg]	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.4	2.6	2.3	2.4	2.7	3.2	3.5	3.8	4.1	4.3	4.6	4.9	5.2

Additional Weight			[kg]
	Size	25	32
Lock		0.30	0.60
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot bracket (2 sets including mounting bolt)		0.08	0.14
Rod flange (including mounting bolt)		0.17	0.20
Head flange (including mounting bolt)		0.17	0.20

Dimensions

Top side parallel motor type: LEY_{32}^{25}

[mm																		
Size	Stroke range [mm]	A	B	C	D	EH	EV			J	K	L	M	O1	R	PA	PB	V
25	15 to 100	130.5	116	13	20	44	45.5	M8 x 1.25		24	17	14.5	34	M5 x 0.8	8	15.4	8.2	40
	101 to 400	155.5	141															
32	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25		31	22	18.5	40	M6 x 1.0	10	15.4	8.2	60
	101 to 500	178.5	160															
Size	Stroke	S	T	U	PC	Without lock			With lock			Y						
	range [mm]					W	X	Z	W	X	Z							
25	15 to 100	46	92	1	15.4	82.5	115.5	11	127.5	160.5	11	51						
	101 to 400																	
32	20 to 100	60	118	1	15.9	80	120	14	120	160	14	61						
	101 to 500																	

Body Bottom Tapped

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30	50	M6x 1	8.5	5	6
	40 to 100			36	43						
	101 to 124						80				
	125 to 200			53	51.5						
	201 to 500			70	60						

[^14]For the mounting bracket dimensions, refer to the Web Catalog

LEY-X5 Series

Dimensions

In-line motor type: $\operatorname{LEY}_{32}^{25} \mathrm{D}$

[mm]																				
Size	Stroke range [mm]	Without lock			With lock			B	C	D	EH	EV								
		A	W	Z	A	W	Z													
25	15 to 100	233.5	82.5	11.5	278.5	127.5	11.5	136.5	13	20	44	45.5								
	101 to 400	258.5			303.5			161.5												
32	20 to 100	254.5	80	14	294.5	120	14	156	13	25	51	56.5								
	101 to 500	284.5			324.5			186												
Size	Stroke range [mm]	H		J	K	L	M	O1		R	PA	PB	V	S	T	U	PC	Y		
25	15 to 100	M8 $\times 1.25$		24	17	14.5	34	M5 x 0.8		8	15.4	8.2	40	45	46.5	1.5	15.9	71.5		
25	101 to 400																			
32	20 to 100	M8 x 1.25		31	22	18.5	40	M6 x 1.0		10	15.4	8.2	60	60	61	1	15.9	87		
32	101 to 500																			

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	101 to 124					75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124		36			80				
	125 to 200		53	51.5						
	201 to 500		70	60						

[^15]
LEY-X5 Series
 Auto Switch Mounting

Auto Switch Proper Mounting Position

Applicable auto switch: D-M9 \square A(V)

LEY25, 32

\rightarrow Switch mounting groove

Size	Stroke range	Auto switch position				Return to origin distance E	Operating range
		Leftward mounting		Rightward mounting			
		A	B	C	D		-
	15 to 100	27	62.5	39	50.5	(2)	4.2
25	105 to 400	52		64			
32	20 to 100	30.5	85.5	42.5	53.5	(2)	4.9
	105 to 500	90.5		102.5			

* The values in the table above are to be used as a reference when mounting auto switches for stroke end detection. Adjust the auto switch after confirming the operating conditions in the actual setting.
* An auto switch cannot be mounted on the same side as a motor.
* For LEYG series models (with a guide), an auto switch cannot be mounted on the guide attachment side (rod side)
* Since the operating range is provided as a guideline including hysteresis, it cannot be guaranteed (assuming approx. $\pm 30 \%$ dispersion). It may change substantially depending on the ambient environment.

Auto Switch Mounting

Tightening Torque for Auto Switch Mounting Screw [N.m]
Auto switch model
Tightening torque
D-M9 \square (V)

* When tightening the auto switch mounting screw (included with the auto switch), use a watchmaker's screwdriver with a handle diameter of 5 to 6 mm .

Water Resistant 2-Color Indicator Solid State Auto Switch: Direct Mounting Type D-M9NA(V)/D-M9PA(V)/D-M9BA(V)

Auto Switch Specifications

Grommet

- Water (coolant) resistant type
- 2-wire load current is reduced (2.5 to 40 mA).
- The proper operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red) - Using flexible cable as standard spec.

Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.
Please contact SMC if using coolant liquid other than water based solution.

Weight

Auto switch model			D-M9NA(V)
(D-M9PA(V)	D-M9BA(V)		
Lead wire	$0.5 \mathrm{~m}(\mathbf{N i I})$	8	7
	$1 \mathrm{~m}(\mathbf{M})$	14	13
	$3 \mathrm{~m}(\mathbf{L})$	41	38
	$5 \mathrm{~m}(\mathbf{Z})$	68	63

PLC: Programmable Logic Controller						
D-M9 \square A, D-M9 \square AV (With indicator light)						
Auto switch model	D-M9NA	D-M9NAV	D-M9PA	D-M9PAV	D-M9BA	D-M9BAV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC r	elay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10	to 28 VDC)
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range Red LED illuminates. Proper operating range Green LED illuminates.					
Standard	CE/UKCA marking					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NAD	D-M9NAV \square D-M9PA \square D	D-M9PAV]	D-M9BA	D-M9BAV \square
Sheath	Outside diameter [mm]	ø2.6				
Insulator	Number of cores	3 cores (Brown/Blue/Black)			2 cores (Brown/Blue)	
	Outside diameter [mm]	$\varnothing 0.88$				
Conductor	Effective area [mm^{2}]	0.15				
	Strand diameter [mm]	$\varnothing 0.05$				
Min. bending radius [mm]		17				

* Refer to page 1363 for solid state auto switch common specifications.
* Refer to page 1363 for lead wire lengths.

Dimensions

D-M9 \square A

D-M9 \square AV

[^0]: *1 Be sure to take appropriate protective measures if the product is to be used in an environment where it will be constantly exposed to water or fluids other than water splash.
 In particular, the product cannot be used in environments where oils, such as cutting oil or cutting fluid, are present.

[^1]: | Ambient temperature | Pushing force set value [\%] | Duty ratio [\%] | Continuous pushing time [min] |
 | :--- | :--- | :--- | :--- | 100

[^2]: * Apply grease on the piston rod periodically.

[^3]: $* 1$ This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 * The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

[^4]: *1 This is the range within which the rod can move when it returns to origin.
 Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *5 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^5]: * The values without a load are shown.

[^6]: *1 Set values for the controller

[^7]: *1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *5 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 For the mounting bracket dimensions, refer to the Web Catalog.

[^8]: *1 This is the range within which the rod can move when it returns to origin. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 Position after returning to origin
 *3 [] for when the direction of return to origin has changed
 *4 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *5 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 For the rod end male thread, refer to page 923. For the mounting bracket dimensions, refer to the Web Catalog.

[^9]: * Please contact SMC for non-standard strokes as they are produced as special orders.

[^10]: * Apply grease to the piston rod periodically.

 Grease should be applied when 1 million cycles or 200 km have been reached whichever comes first

[^11]: *1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^12]: *1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole. Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 For the rod end male thread, refer to page 929. For the mounting bracket dimensions, refer to the Web Catalog.

[^13]: * Please contact SMC for non-standard strokes as they are produced as special orders.

[^14]: *1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

[^15]: *1 This is the range within which the rod can move. Make sure that workpieces mounted on the rod do not interfere with other workpieces or the facilities around the rod.
 *2 The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.
 *3 The vent hole is the port for releasing to atmosphere. Do not apply pressure to this hole.
 Attach tubing to the vent hole and place the end of the tubing so it is not exposed to dust or water.

 For the rod end male thread, refer to page 934. For the mounting bracket dimensions, refer to the Web Catalog.

