

Technical data for air cylinders

For detailed technical data other than the air cylinder model selection, refer to pages 1569 to 1576.

Data 1: Bore Size Selection (page 1570)

Data 2: Air Consumption and Required Air Volume (page 1574)

Data 3: Theoretical Output Table (page 1575)

Data 4: Condensation (page 1576)

tep

Obtain the bore of the cylinder tube. \rightarrow Refer to Graph (1) and (2).

$(\underline{1})$ Determine the load factor in accordance with the purpose.

	Purpose of operation					
(Clamp	Static operation (Clamping, Low-speed vise crimping, etc.)					
Dynamic	Horizontal movement of load on guide	1 or less (100% or less)				
operation	Vertical and horizontal movement of the load	0.5 or less ^{Note)} (50% or less)				

Note) If it is particularly necessary to operate at high speeds, the load rate must be reduced further. (In the graph, it is possible to select a load rate of 0.4, 0.3, 0.2, or less.)

2 Determine the operating pressure.

Generally, set the regulator to 85% of the source air pressure. (In the graph, a selection between 0.2 MPa and 0.8 MPa is possible.)

③ Determine the direction in which the cylinder force will be used. Extending side → Refer to Graph (1).

Retracting side → Refer to Graph (2).

Note) If the same load is applied both for pushing and pulling in a horizontal operation, set the direction to the retracting side.

Step

Take the impact at the stroke end into consideration.

- When an external stopper (shock absorber, etc.) is provided to absorb the impact, select a stopper with sufficient absorption capacity.
- ② Stopping the piston with the cylinder without a stopper:

Verify in Graphs (3) to (10) the absorption capacity of the cushion that is enclosed in the cylinder.

 Rubber bumper ······ Urethane rubber is used for preventing metalto-metal contact between the piston and the cover.

 Air cushion------- The air in the exhaust side is compressed slightly before the stroke end, and its reaction force absorbs the kinetic energy of the load, thus enabling the piston to stop quietly.

Step

The aspects indicated below may need to be taken into consideration, depending on how the cylinder is operated.

1 If a lateral load is applied to the piston rod:

Verify in Graphs (11) to (19) whether the lateral load is within an allowable range.

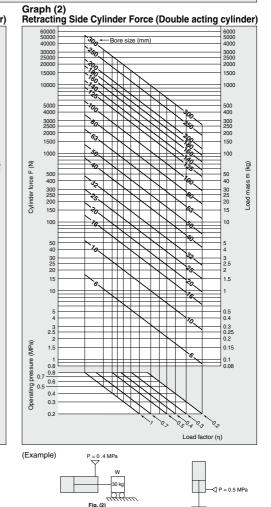
When using a cylinder with a relatively long stroke, if a buckling force acts on the piston rod or the cylinder tube, verify in the table whether the stroke or the operating pressure is within a safe range.

Obtain the cylinder's air consumption and its required air volume.

Obtain the air consumption selecting a compressor and for calculating the running cost and the required (Graphs (21), (22)) that is necessary for selecting a compressor and for calculating the running cost and the required air volume (Graph (23)) that is necessary for selecting equipment such as an air filter or a regulator, or the size of the piping upstream.

Obtain the bore of the cylinder tube. \rightarrow Refer to Graph (1) and (2). Graph (1) Extending Side Cylinder Force (Double acting cylinder) 60000 50000 6000 5000 ð Bore size (mm) 40000 4000 -3₅₀ 30000 25000 3000 2500 1270101 20000 2000 15000 1500 10000 2 1000 700 5000 500 4000 400 è 300 250 3000 2500 2000 200 ò, 1500 150 50 1000 100 10 ŝ (kg) 500 50 <u>ک</u> ε Cylinder force 400 40 mass 300 250 <u>`</u>26 30 25 Load 200 20 6 6, 150 15 76 ŝ 100 10 80 70 50 5 40 Â 30 25 3 2.5 20 2 6 15 1.5 10 Z6 0.5 5 4 0.4 0.3 2.5 2 (MPa) 1.5 0.15 0.1 Operating pressure 0.8 0.7 0.6 0.5 0.4 0.3 0.2 ο, ΰ. Load factor (η) (Example) P = 0.5 MPc

Step 1


Example 1: If the minimum force of 1000 N is necessary to keep the workpiece pressed as shown in Fig. (1), because this is the extending side, use Graph (1) to determine the load factor of 0.7 and the operating pressure of 0.5 MPa. Then, seek the point at which the cylinder force of 1000 N

intersects, and this will result in a bore size of 63 mm.

Conversion to gravitational units

```
1 MPa ≈ 10.2 kgf/cm<sup>2</sup>
                                   1 N ≈ 0.102 kgf
1 kgf/cm<sup>2</sup> ~ 0.098 MPa
                                   1 kqf ≈ 9.8 N
```

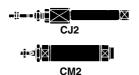
SMC

Example 2: To move a load with a 30 kg mass horizontally on a guide as shown in Fig. (2), because the load is the same for both the extending and retracting sides, use Graph (2), which is the retracting side with a smaller force. Determine the load factor of 1, and the operating pressure of 0.4 MPa. Then, seek the point at which it intersects with the load mass of 30 kg, and this will result in a bore size of 40 mm.

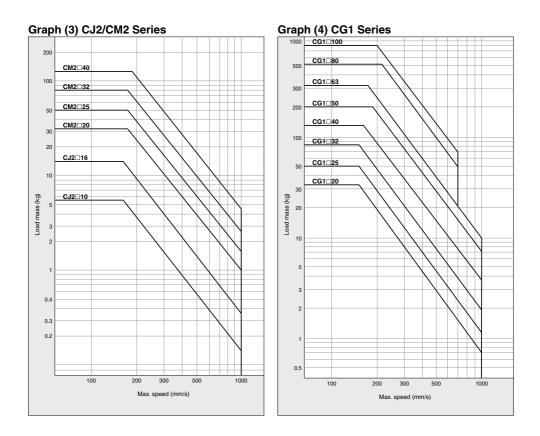
Example 3: To pull a load with a 100 kg mass vertically upward as shown in Fig. (3), use Graph (2) to determine the load factor of 0.5 and the operating pressure of 0.5 MPa.

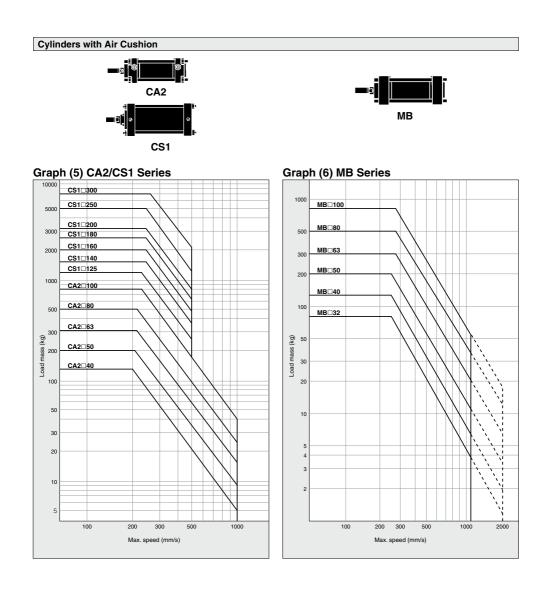
Then, seek the point at which it intersects with the load mass of 100 kg, and this will result in a bore size of 80 mm. 9

100 kg Fig. (3)

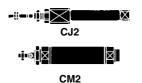

Step

Take the impact at the stroke end into consideration.

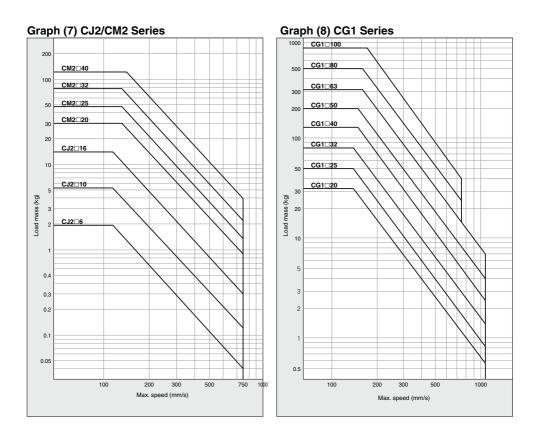

How to Read the Graph

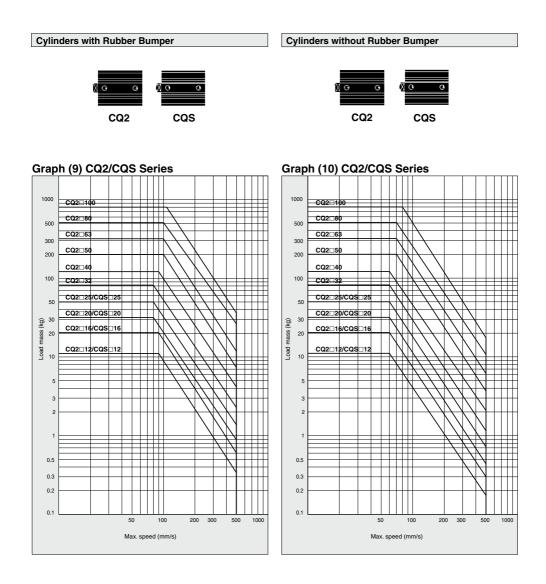

Example 1: According to Graph (3), to move a load mass of 50 kg using a cylinder with an air cushion, CM2□40, it is necessary to set the maximum speed at 300 mm/s or less, considering the capacity of the air cushion.

Cylinders with Air Cushion

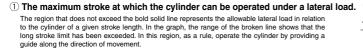

Step

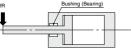
Take the impact at the stroke end into consideration.

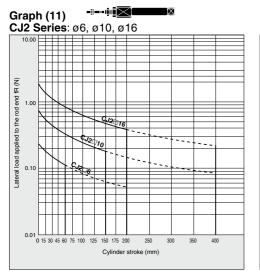

How to Read the Graph

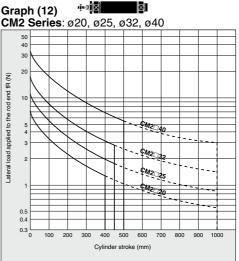

Example 2: According to Graph (8), to move a load mass of 50 kg at a maximum speed of 500 mm/s, in the CG1 series, a bore size of ø80 can be selected.

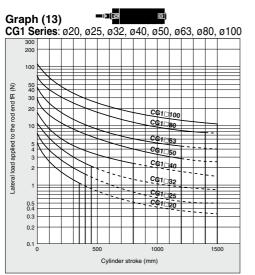
Cylinders with Rubber Bumper

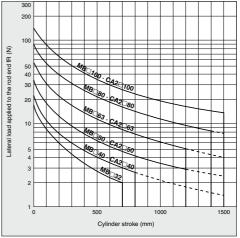


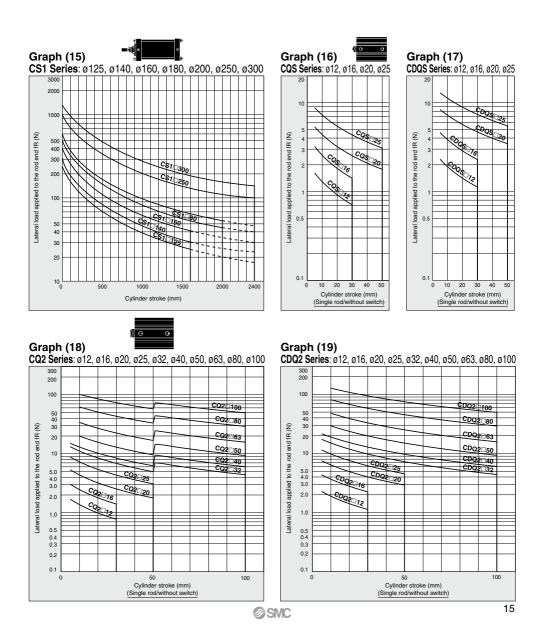

Step


Air Cylinders Model Selection


The aspects indicated below may need to be taken into consideration, depending on how the


SMC





Graph (14) MB Series: ø32, ø40, ø50, ø63, ø80, ø100 CA2 Series: ø40, ø50, ø63, ø80, ø100

cylinder is operated.

Step

Air Cylinders Model Selection

The aspects indicated below may need to be taken into consideration, depending on how the

② The relation between the cylinder size and the maximum stroke depending on the mounting type.

Assuming that the force that is generated by the cylinder itself acts as a buckling force on the piston rod or on the piston rod and the cylinder tube, the table below indicates in centimeters the maximum stroke that can be used, which was obtained through calculation. Therefore, it is possible to find the maximum stroke that can be used with each cylinder size according to the relationship between the level of the operating pressure and the type of cylinder mounting, regardless of the load factor.

(cm)

(cm)

Reference: Even under a light load, if the piston rod has been stopped by an external stopper at the extending side of the cylinder, the maximum force generated by the cylinder will act upon the cylinder itself.

(cm)																									
Moun	ting type		ating		stroke that c g to buckling			Ν	Moun	iting	type		ating	Maxi	mum	strok	e that	can b	e use	ed acc	cordin	g to b	to buckling strength		
	g bracket	Nominal symbol	Operating pressure		CJ2			Mounting bracket		Nominal symbol	Operating pressure		CI	/ 12					C	G1					
diag	Iram	Nor SVI	(MPa)	6	10	16			diag			Nor SV1	(MPa)	20	25	32	40	20	25	32	40	50	63	80	100
Foot: L	Rod side flange: F		0.2	20	29	29	Foo	t: L	Rod : flang		Head side flange: G	L	0.3	39	49	56	61	38	49	55	80	100	78	96	112
	Ŵ		0.3	20	23	23	1	Ň			Ŵ	F	0.5	29 24	37 31	42 35	46 38	29 24	36 30	42 34	60 50	76 63	59 49	73 60	85 71
1815		BL						5			։ Այր		0.3	16	20	24	25	15	21	24	36	45	34	42	50
	Щ	F	0.5	16	17	17		1		Ĩ		G	0.5	11	14	17	17	11	14	17	26	33	25	31	37
			0.7	13	14	14	ľ			4			0.7	8	11	13	13	8	11	13	21	27	20	24	29
Cle	vis:						(Clevi C, D			od side nnion: U		0.3	36	46	53	56	37	47	53	78	98	76	94	109
	D		0.2	-	40	40						C D	0.5	26	34	39	42	27	35	40	59	74	57	70	82
			0.3	_	40	40					諸		0.7	21	28	32	34	22	28	32	48	61	46	58	68
		D	0.0				.	Ц			Ш		0.3	82	103	116	126	81	102	115	150	150	150	-	-
			0.5	—	32	31		ad s nnior			Center nnion: T	U	0.5	62 52	79 66	89 75	97 81	61 51	78 65	88 73	126 106	159 133	124 104	-	-
			0.7	_	26	25				CA1, C	S1 series only		0.7	37	47	54	58	38	48	55	79	100	78	_	_
	Rod side		0.7		20	20		督				т	0.5	27	35	40	43	28	36	41	60	76	59	_	-
Foot: L	flange: F		0.2	20	40	40		6	<i>m</i>		覐		0.7	22	29	33	35	23	30	34	50	63	48	-	-
			0.3	20	40	40	Foo	t: L	Rod : flang		Head side flange: G		0.3	100	147	166	181	117	147	150	150	150	150	150	150
		BL		-								F	0.5	90	113	128	139	89	112	127	150	150	150	150	150
	Ĥ	F	0.5	20	40	40	4	7 E	1	57 É			0.7	76	95	107	117	75	94	107	150	150	150	150	150
F			0.7	20	40	40				f		G	0.3	55 41	69 52	79 60	85 64	55 41	70 52	79 60	114 87	143 109	112 85	138 105	150 122
	Rod side							ľ]			0.7	34	43	49	53	34	43	50	72	91	71	87	102
Foot: L	flange: F		0.2	20	40	40	Foc	t: L	Rod : flang		Head side flange: G		0.3	100	150	200	200	150	150	150	150	150	150	150	150
	× +		0.3	20	40	40	1		1	71		L	0.5	100	150	183	199	128	150	150	150	150	150	150	150
	и <u>ш</u>	B											0.7	100	136	154	167	108	135	150	150	150	150	150	150
	THE A	F	0.5	20	40	40				<u>"</u>	盐		0.3	80	101	114	123	80	101	114	150	150	150	150	150
	U		0.7	20	40	40						G	0.5	61	77	87	94	61	77	87	126	150	124	150	150
							ſ			-	hinnin		0.7	50	64	72	78	50	64	73	105	132	103	127	148

cylinder is operated.

			_				_					_		_						(cm)
N				Maximum stroke that cal					In be used according to buck					uckl						
Mounting bracket diagram		Operating pressure	MB MB, CA2				CS1					CS2								
	diagram		Nol Syl	(MPa)	32	40	50	63	80	100	125	140	160	180	200	250	300	125	140	160
Foot: L	Rod side flange: F	Head side flange: G		0.3	71	81	102	79	98	114	131	117	126	141	158	182	206	103	92	113
w	W		L F	0.5	56	63	78	61	75	88	101	89	96	108	121	140	158	79	70	86
T	Ĩ	T		0.7	46	52	65	50	62	73	84	74	80	89	101	115	131	66	58	72
胁	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥ 8,		0.3	31	35	46	34	42	50	57	49	53	60	68	79	90	45	38	47
	- F		G	0.5	23	26	34	25	31	37	42	35	38	44	50	58	66	33	27	34
				0.7	19	21	27	19	24	29	34	28	30	34	40	45	53	26	22	27
Clevis C, D		od side nnion: U		0.3	67	76	96	73	91	105	122	106	118	130	146	167	190	96	83	106
A		<pre>B</pre>	C D	0.5	50	57	72	54	68	78	91	78	85	96	109	124	141	71	61	76
205 215				0.7	41	46	60	44	55	64	75	64	69	78	89	101	115	59	50	62
		Ĩ		0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Head sid	Head side Center		0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
trunnion:		runnion: T 2S1, CS2 series only		0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
				0.3	93	105	134	103	128	149	171	151	163	183	206	235	267	135	119	147
日報			Т	0.5	71	80	102	78	97	113	129	113	123	139	156	178	203	101	89	111
	~	覐		0.7	58	66	85	65	81	93	107	94	101	115	129	147	168	84	74	91
Foot: L	Rod side flange: F	Head side flange: G		0.3	206	234	295	231	287	330	382	339	366	412	459	527	598	301	267	330
www.	W	W	L F	0.5	158	179	226	177	219	253	293	263	281	315	252	403	458	231	207	253
	¶ √ ∥			0.7	132	150	190	148	184	212	245	218	235	265	296	339	385	193	172	212
		ę,		0.3	99	112	142	116	136	158	183	160	173	196	218	251	286	144	126	156
	ĥ		G	0.5	75	85	108	83	102	119	138	120	131	147	165	189	216	109	94	118
				0.7	62	70	90	68	85	99	114	99	108	122	137	157	179	90	78	97
Foot: L	Rod side flange: F	Head side flange: G		0.3	280	318	423	313	412	476	549	489	528	594	661	762	863	433	386	476
	W		L F	0.5	234	266	339	257	317	367	423	377	407	457	509	587	665	334	297	367
				0.7	194	220	275	216	267	309	356	317	343	385	429	494	561	281	250	309
胁		j.		0.3	136	154	206	151	199	231	266	235	254	287	320	369	419	210	185	229
	Ĥ		G	0.5	110	125	158	123	152	176	203	179	194	218	244	281	320	160	141	175
, ¶≓≕				0.7	93	105	132	102	127	147	170	149	144	182	204	235	268	134	117	129

Step Δ

Obtain the cylinder's air consumption and its required air volume.

Cylinder's air consumption and its required air volume.

In equipment that used a cylinder, air consumption is the volume of air that is consumed in the cylinder, or in the piping between the cylinder and the switching valve, every time the switching valve operates.

This is necessary for selecting a compressor and for calculating the running cost. The required air volume is the volume of air that is necessary for operating a specified load at a specified speed, and it is necessary for selecting the F.R.L equipment or the size of the upstream piping.

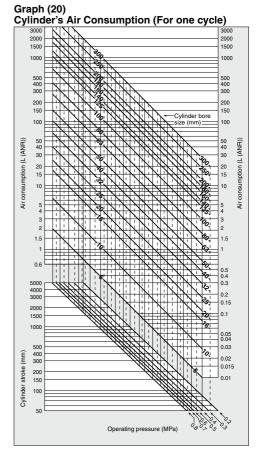
How to Obtain the Air Consumption/How to Read Graphs (20), (21)

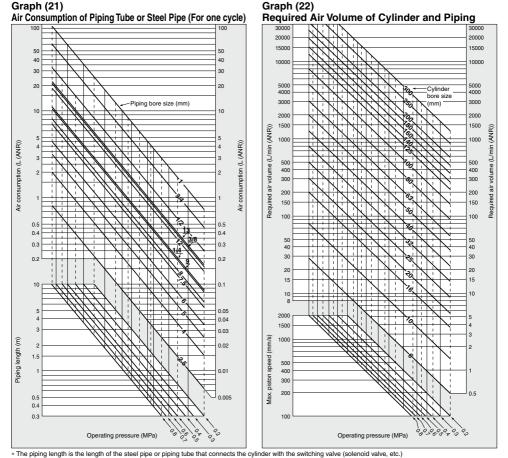
Step 1 By using Graph (20), obtain the air consumption of the air cylinder.

- ① Seek the point at which the operating pressure (diagonal line) intersects with the cylinder stroke, and from that point, perpendicularly extend a vertical line upward.
- 2 From the point at which it intersects with the bore size (diagonal line) of the cylinder to be used, look sideways (either to the right or left) to obtain the air consumption that is required by one cycle of the air cylinder.

Step 2 By using Graph (21), obtain the air consumption of the piping tube or steel pipe in the same way as in Step 1.

Step 3 Obtain the total air consumption per minute as described below


(Air consumption of air cylinder + Air consumption of piping tube or steel pipe) x Number of cycles per minute x Number of cylinders being used = Total air consumption [Unit: L/min (ANR)]

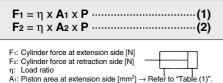

- Note) In selecting a compressor, the temperature drop, leakage, and consumption by the intermediary equipment must be taken into consideration. Thus, select one with a generous capacity, with a discharge that exceeds the total air consumption indicated above. (Reference: At a minimum, select one with 1.4 times the volume; select one with a higher volume as needed.)
- Example: When 10 air cylinders with a 50 mm cylinder bore size and a 600 mm stroke are used at a pressure of 0.5 MPa, what is the air consumption of their 5 cycles per minute? (A 2 m piping tube with a 6 mm bore is used for piping between the cylinders and the switching valve.)
 - 1. Operating pressure 0.5 MPa → Cylinder stroke 600 mm → Bore size 50 mm → Air consumption ≈ 13 L (ANR)
 - 2. Operating pressure 0.5 MPa \rightarrow Piping length 2 m \rightarrow Bore 6 mm \rightarrow Air consumption \approx 0.56 L (ANR)
 - 3. Total air consumption = (13 + 0.56) x 10 x 5 = 678 L/min (ANR)

How to Obtain the Required Air Volume/How to Read Graph (22)

Step 3 By using Graph (22), obtain the air cylinder's required air volume

- 1 Seek the point at which the operating pressure (diagonal line) intersects with the cylinder stroke, and from that point, perpendicularly extend a vertical line upward.
- 2 From the point at which it intersects with the bore size (diagonal line) of the cylinder to be used, look sideways (either to the right or left) to obtain the air consumption that is required by one cycle of the air cylinder.
- Example: What is the required air volume for operating a cylinder with a bore size of 50 mm, at pressure of 0.5 MPa, and at a speed of 500 mm/s?
- How to read: Operating pressure 0.5 MPa → Maximum piston speed 500 mm/s \rightarrow Cylinder bore size 50 mm \rightarrow Then, a required air volume 350 L/min (ANR) can be obtained

* For the dimensions (bore size and O.D.) of the steel tubing, refer to page 1574.


Technical Data 1: Bore Size Selection

Data 1 Bore Size Selection

1 Double Acting Cylinder

The relation of cylinder force, bore size and operating pressure is the following

Formula

- A₂: Piston area at retraction side $[mm^2] \rightarrow Refer$ to "Table (1)".
- P: Operating pressure [MPa]
- Note) As shown in the diagram below, the pressure receiving area on the retraction side of the double acting single rod cylinder is reduced by the amount of the cross sectional area of the piston rod.



Table (1) Cylinder Piston Area

Bore size D [mm]	Piston rod size d [mm]	Piston area at extension side A1 [mm ²]	Piston area at retraction side A2 [mm ²]		
4	2	12.6	9.4		
6	3	28.3	21.2		
8	5	50.3	30.6		
10	4	78.5	66.0		
12	6	113	84.8		
	5	201	181		
16	6	201	173		
	8	201	151		
00	8	314	264		
20	10	314	236		
25	10	491	412		
25	12	491	378		
32	12	804	691		
32	16	804	603		
40	14	1260	1100		
40	16	1260	1060		
50	20	1960	1650		
63	20	3120	2800		
80	25	5030	4540		
100	30	7850	7150		
125	32	12300	11500		
125	36	12300	11300		
140	32	15400	14600		
140	36	15400	14400		
160	38	20100	19000		
100	40	20100	18800		
180	40	25400	24200		
180	45	25400	23900		
200	40	31400	30200		
200	50	31400	29500		
250	60	49100	46300		
300	70	70700	66800		

Load ratio n

In selecting a cylinder, do not forget that in addition to the load, there are many forces that act upon the cylinder. Even in the stationary state shown in the diagram below, the resistances of the seals and the bearings in the cylinder must be subtracted. Furthermore, during operation, recoil due to the exhaust pressure also come into play.

These forces that act against the cylinder vary according to the conditions of the cylinder such as its size, pressure, and speed. Therefore, it is recommended to always select a cylinder of a larger size. Thus, select an air cylinder so that the load factor, which is a factor that is used in the selection process, will be as shown below. 1) To use a cylinder for stationary operations:

- load factor $\eta = 0.7$ or below (Fig.1)
- 2) To use a cylinder for dynamic operations:
- load factor $\eta = 0.5$ or below (Fig.2)
- 3) To use a cylinder with a guide for horizontal operations: load factor n = 1 or below (Fig. 3)

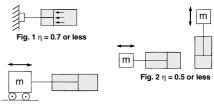


Fig. 3 η = 1 or less

Note) If a dynamic high-speed operation is particularly needed, further reduce the load factor. Then, the cylinder will have power to spare for the amount by which the load factor has been reduced, which will make it easier to produce speed.

Meanwhile, a cylinder force that has been calculated by multiplying only the operating pressure by the pressure receiving area, assuming that no resistance exists in the cylinder, is called a "theoretical output". For details about the theoretical output, refer to Data 3, page 1575.

* Refer to the "Dimensions" section for the piston rod size.

Bore Size Selection

2 Single Acting Cylinder

1. Single acting, Spring return type Formula $F_{1} = \eta \times (A_{1} \times P - f_{2}) \dots (3)$ $F_{2} = \eta \times f_{1} \dots (4)$

- F1: Cylinder force at extension side [N]
- F2: Cylinder force at retraction side [N]
- η: Load ratio (Same as double acting type cylinder. Refer to page 1570.)
- A1: Piston area at extension side [mm²]
- P: Operating pressure [MPa]
- f2: Spring reaction force (Outlet) [N] \rightarrow Refer to "Table (2)".
- f1: Spring reaction force (Inlet) [N] \rightarrow Refer to "Table (2)".
- Note) Avoid applying a load on the cylinder as much as possible, because the value of the output force of a cylinder at the retraction side could be small.

Table (2) Spring Reaction Force/Single Acting

			(N)				
Series	Bore size	Spring reaction force (N)					
Series	(mm)	Outlet	Inlet				
CJ1 Note)	2.5	1.13	0.64				
CJINON	4	3.04	1.47				
	4	2.80	1.00				
	6	3.92	1.42				
CJP ^{Note)}	10	5.98	2.45				
	15	10.8	4.41				
	6	3.72	1.77				
CJ2 ^{Note)} CVJ3*	10	6.86	3.53				
0,000	16	14.2	6.86				

* Use the same spring for the spring return type. * CVJ3: ø10, ø16 only.

Note) The spring reaction force is the same for each standard stroke.

CQ2 Series/Single Acting, Spring Return (N)							
Bore size	Stroke	Spring reaction force (N					
(mm)	(mm)	Outlet	Inlet				
40	5	13	8.6				
12	10	13	3.9				
40	5	15	10.3				
16	10	15	5.9				
	5	15	10				
20	10	15	5.9				
	5	20	16				
25	10	20	11				
	5	30	23				
32	10	30	16				
40	5	30	13				
40	10	39	21				
	10	50	30				
50	20	54	24				

2. Single acting, Spring extend type	Ŵ
$F_1 = \eta \times f_1 \dots (5)$ $F_2 = \eta \times (A_2 \times P - f_2) \dots (6)$	

A2: Piston area at retraction side [mm²]

Note) Avoid loading the cylinder since the cylinder force at the extension side is a small value.

CQ2 Series/Single Acting, Spring Extend (N)

Bore size	Stroke	Spring reaction force (N)				
(mm)	(mm)	Outlet	Inlet			
40	5	11	2.9			
12	10	9.7	2.8			
16	5	20	3.9			
10	10	20	3.9			
20	5	27	5.3			
20	10	27	5.9			
05	5	29	9.8			
25	10	29	9.8			
32	5	29	20			
32	10	29	20			
40	5	29	20			
40	10	29	20			
50	10	83	24			
50	20	83	24			

1. Single acting, Spring return

Spring in pre-loaded Spring of outlet

Spring of outlet mounting load

When the spring is set in the cylinder

When the spring is contracted by supplying air 2. Single acting, Spring extend

Spring in pre-loaded condition

in the cylinder

Spring of outlet mounting load

IN

When the spring is set

When the spring is contracted by supplying air

Technical Data 1: Bore Size Selection

Data 1 Bore Size Selection

Table (3) Spring Reaction Force/Single Acting

CU Series/Single Acting, Spring Return (N)								
Bore size	Stroke	Spring reaction force (N						
(mm)	(mm)	Outlet	Inlet					
	5	3.5	2.9					
6	10	3.5	2.2					
	15	3.5	1.6					
	5	6.9	5.0					
10	10	6.9	3.0					
	15	6.9	3.3					
	5	14.7	10.3					
16	10	14.7	5.9					
	15	14.7	9.3					
	5	15	11					
20	10	15	6					
	15	21	10					
	5	21	16					
25	10	21	11					
	15	28	14					
	5	30	23					
32	10	30	16					
	15	34	17					

* Use the same spring for the spring return type.

CM2 Series

CVM3 Seri	es		(N
Bore size	Stroke	Spring react	ion force (N)
(mm)	(mm)	Outlet	Inlet
	25		24
	50		7.8
	75	39	17
20	100	39	9.8
	125		14
	150		8.8
	25		30
	50		14
25	75	47	25
25	100] 4/	17
	125		21
	150		16
	25		41
	50		15
	75		31
32	100	67	20
32	125	0/	26
	150		18
	175		25
	200		20
	25		50
	50		24
	75		36
	100		24
40	125	76	32
	150	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	24
	175		30
	200		24
	225		29
	250		24

CG1 Serie	s		(N)
Bore size	Stroke	Spring react	ion force (N)
(mm)	(mm)	Outlet	Inlet
	25		24
	50		7.8
20	75	39	17
	100		9.8
	125		14
	25		30
	50	47	14
	75		24
25	100		17
	125		21
	150		24
	200		17
	25		40
	50		15
	75		31
32	100	67	20
	125		25
	150		31
	200		20
	25		50
	50		24
	75		36
40	100	76	24
	125		32
	150		36
	200		24

1. Single acting, Spring return

Spring in pre-loaded Spring of outlet condition

When the spring is set in the cylinder

mounting load

When the spring is contracted by supplying air

2. Single acting, Spring extend

Spring in pre-loaded condition

OUT

When the spring is contracted by supplying air

IVYYY

Bore Size Selection

3 Cushion

When a load that is operated by a cylinder must be stopped at the end of the stroke, the piston in the cylinder will collide with the cover unless an external stopper is provided. A built-in function that cushions the impact and the sound that are generated at this time is the cushion mechanism.

There are two types in the cushion mechanism as below.

- Rubber bumper: Dampens the impact sound and prevents the installation area from becoming loosened or damaged by the impact.
- Air cushion: Similar to a rubber bumper, but achieves a higher level of effectiveness. It cushions the vibrations that are generated by collision.

Note) Depending on the model of the cylinder, it might not be possible to have either of the above two cushions built into the cylinder.

Even if the one of the cushion mechanisms described above is used for stopping a load, it might not be possible to completely absorb the impact if the kinetic energy of he load is too large. Therefore, be careful of overloading or excessive speed.

The kinetic energy of a load for linear motion can be expressed by the formula given below.

Formula

E: Kinetic energy [J] m: Load mass [kg]

V: Max. piston speed [m/s]

v. Max. pision speed [m/s]

Kinetic energy absorbable by the cushion mechanism is the table at right. When the values are exceeded, following countermeasures are required like using a bigger bore size cylinder or mounting an external stopper, etc.

CQ2 Series

Bore size	Allowable kine	etic energy (J)		
(mm)	Standard type	With rubber bumper		
12	0.022	0.043		
16	0.038	0.075		
20	0.055	0.11		
25	0.09	0.18		
32	0.15	0.29		
40	0.26	0.52		
50	0.46	0.91		
63	0.77	1.54		
80	1.36	2.71		
100	2.27	4.54		
125	—	7.4		
140	—	9.8		
160				
180	—	12.4		
200				

RQ Series

Bore size (mm)	Effective cushion length (mm)	Kinetic energy absorbable (J)
20	5.8	0.40
25	6.1	0.63
32	6.6	1.00
40	6.6	1.60
50	7.1	2.50
63	7.0	4.00
80	7.5	6.40
100	8.0	10.00

Kinetic Energy Absorbable by the Cushion Mechanism

Dens sins	Rubber bumper	Air cushion				
Bore size (mm)	Allowable kinetic energy (J)	Effective cushion length (mm)	Kinetic energy absorbable (J)			
6	0.012	—	—			
10	0.035	9.4	0.07			
16	0.090	9.4	0.18			

CM2 Series (Male thread type)

	Rubber bumper	Air cushion				
Bore size	Allowable kinetic energy	Effective cushion length	Kinetic energy absorbable			
(mm)	(J)	(mm)	(J)			
20	0.27	11.0	0.54			
25	0.4	11.0	0.78			
32	0.65	11.0	1.27			
40	1.2	11.8	2.35			

CG1 Series (Male thread type)

Davis sizes	Rubber bumper	Air cushion				
Bore size (mm)	Allowable kinetic energy	Effective cushion length	Kinetic energy absorbable			
(11011)	(J)	(mm)	(J)			
20	0.28	R: 7.0, H: 7.5	R: 0.35, H: 0.42			
25	0.41	R: 7.0, H: 7.5	R: 0.56, H: 0.65			
32	0.66	7.5	0.91			
40	1.2	8.7	1.8			
50	2.0	11.8	3.4			
63	3.4	11.8	4.9			
80	5.9	17.3	11.8			
100	9.9	15.8	16.7			
<u> </u>		`	Rod side, H: Head side			

CA2, CS1, CS2 Series

Bore size (mm)	Effective cushion length (mm)	Kinetic energy absorbable (J)
40	15.0	2.8
50	15.0	4.6
63	15.0	7.8
80	24.0	16
100	29.0	29
125	21.0	32.3
140	21.0	44.6
160	21.0	58.8
180	22.5	78.4
200	22.5	98.0
250	28.5	147
300	28.5	265

MB Series

Bore size	Effective cushion length	Kinetic energy absorbable			
(mm)	(mm)	(J)			
32	18.8	2.2			
40	18.8	3.4			
50	21.3	5.9			
63	21.3	11			
80	30.3	20			
100	29.3	29			
125	R: 31.4 H: 29.4	43			

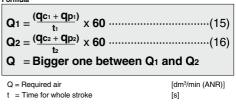
Technical Data 2: Air Consumption and Required Air Volume

Data 2 Air Consumption and Required Air Volume

The air consumption is the volume of air that is consumed in the cylinder or in the piping between the cylinder and the switching valve during the reciprocal movement of an air cylinder. It is necessary for selecting a compressor and for calculating the running cost. The required air volume is the volume of air that is required for operating the cylinder at a specified speed, and it is necessary for selecting the diameter of the piping upstream from switching valve or the FRL equipment.

1. Air Consumption

$\mathbf{qc1} = \mathbf{A_1} \times \mathbf{L} \times \frac{(\mathbf{P_1} + 0.1)}{(\mathbf{p_1} - 0.1)} \times 10^{-6}$	
$\mathbf{qc2} = \mathbf{A}_2 \times \mathbf{L} \times \frac{(\mathbf{P}_2 + 0.1)}{0.1} \times 10^{-6}$	
$\mathbf{q}_{p1} = \mathbf{a}_1 \times \ell_1 \times \frac{\mathbf{p}_1}{0.1} \times 10^{-6}$	
$\mathbf{q}\mathbf{p}2 = \mathbf{a}_2 \times \ell_2 \times \frac{\mathbf{p}_2}{0.1} \times 10^{-6}$	(11)
Double acting cylinder	
$\mathbf{q} = \mathbf{q}\mathbf{c}_1 + \mathbf{q}\mathbf{p}_1 + \mathbf{q}\mathbf{c}_2 + \mathbf{q}\mathbf{p}_2 \dots$	(12)
Single acting, Spring return type cy	linder
$\mathbf{q} = \mathbf{q}\mathbf{c}_1 + \mathbf{q}\mathbf{p}_1$	(13)
Single acting, Spring extend type cy	linder
$\mathbf{q} = \mathbf{q}\mathbf{c}_2 + \mathbf{q}\mathbf{p}_2$	(14)
qc = Air consumption of air cylinder	[dm ³ (ANR)]
 q_P = Air consumption of tubing or piping q = Air consumption required for one stroke of air cylinder 	[dm ³ (ANR)] [dm ³ (ANR)]



Subscript 1: Extension side Subscript 2: Retraction side

Nominal size	O.D. (mm)	I.D. (mm)	Internal sectional area a (mm ²)		
T□0425	4	2.5	4.9		
T□0604	6	4	12.6		
TU 0805	8	5	19.6		
T□0806	8	6	28.3		
1/8B	_	6.5	33.2		
T□1075	10	7.5	44.2		
TU1208	12	8	50.3		
T□1209	12	9	63.6		
1/4B	—	9.2	66.5		
TS1612	16	12	113		
3/8B	—	12.7	127		
T□1613	16	13	133		
1/2B	—	16.1	204		
3/4B	—	21.6	366		
1B	—	27.6	598		

Internal Sectional Area of Tubing and Steel Piping

2. Required Air Volume

Subscript 1: Extension side Subscript 2: Retraction side

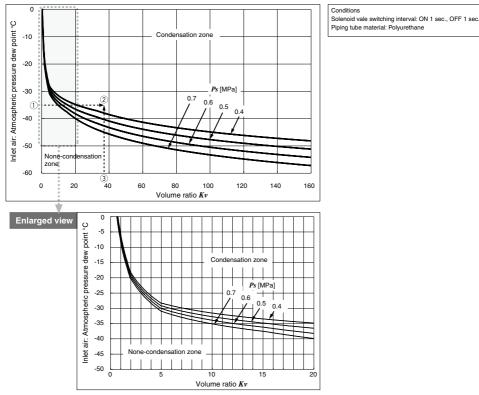
For calculating the volume of air consumption and required air in accordance with each condition, please make use of our "Equipment Selection Program" and "Energy Saving Program".

			-	al D		-	tou	it Ta	ahl	0		
Date		Theore			ai	Uu	ւթս			C		
						~ ~			001			
Applic	able	cylinde	r: CJ2	2, CM	2, C	G1, C	;A2,	MB,	CS1,	CS2	Serie	s
				5	-	-	2		1	1	-	
	1.1.	-			120		1				1	
MI		and	and the		ant		02		E La	•		
CJ2 Ser		CM2 Serie	es CG1	Series	CA2	Series	MBS	Series	CS1	Series	CS2	Series
ø6 to ø		(ø20 to ø4				to ø100)		to ø125)		5 to ø300)		5 to ø160
Even the ti	neoretical or	utput of non-app	plicable cylinde	rs can be calcul	ated using the	bore and rod s	izes in the tabl	e below.		- 	· ·	
Double		g Cylinde	er						•		•	- IN (I
Bore size (mm)	Rod size (mm)	Operating direction	Piston area (mm ²)	0.2	0.3	0.4	Oper 0.5	ating pressure (0.6	MPa) 0.7	0.8	0.9	1.0
6	3	OUT	28.3 21.2	5.66 4.24	8.49 6.36	11.3 8.48	14.2 10.6	17.0 12.7	19.8 14.8	_	_	-
10	4	OUT	78.5	15.7	23.6	31.4 26.4	39.3	47.1	55.0	-	-	-
16	5	IN OUT	201	13.2 40.2	19.8 60.3	80.4	33.0 101	39.6 121	46.2 141	_	_	-
20	8	IN OUT	181 314	36.2 62.8	54.3 94.2	72.4 126	90.5 157	109 188	127 220	251	283	314
25	10	IN OUT	264 491	52.8 98.2	79.2	106 196	132 246	158 295	185 344	211 393	238 442	264 491
		IN OUT	412 804	82.4 161	124 241	165 322	206 402	247 482	288 563	330 643	371 724	412 804
32	12	IN OUT	691 1260	138 252	207 378	276 504	346 630	415 756	484 882	553 1010	622 1130	691 1260
40	14	IN OUT	1100 1260	220 252	330 378	440	550 630	660 756	770	880 1010	990 1130	1100
	16	IN	1060	212	318	424	530	636	742	848	954	1060
50	20	OUT IN	1960 1650	392 330	588 495	784 660	980 825	1180 990	1370 1160	1570 1320	1760 1490	1960 1650
63	20	OUT	3120 2800	624 560	936 840	1250 1120	1560 1400	1870 1680	2180 1960	2500 2240	2810 2520	3120 2800
80	25	OUT	5030 4540	1010 908	1510 1360	2010 1820	2520 2270	3020 2720	3520 3180	4020 3630	4530 4090	5030 4540
100	30		7850	1570 1430	2360 2150	3140 2860	3930 3580	4710 4290	5500 5010	6280 5720	7070	7850
	32	OUT	12300	2460	3690	4920	6150	7380	8610	9840	11100	12300
125	36	IN OUT	11500 12300	2300 2460	3450 3690	4600 4920	5750 6150	6900 7380	8050 8610	9200 9840	10400 11100	11500 12300
	32	IN OUT	11300 15400	2260 3080	3390 4620	4520 6160	5650 7700	6780 9240	7910 10800	9040 12300	10200 13900	11300 15400
140		IN OUT	14600 15400	2920 3080	4380 4620	5840 6160	7300 7700	8760 9240	10200 10800	11700 12300	13100 13900	14600 15400
	36	IN OUT	14400 20100	2880 4020	4320 6030	5760 8040	7200 10100	8640 12100	10100 14100	11500 16100	13000 18100	14400 20100
160	38	IN OUT	19000 20100	3800 4020	5700 6030	7600 8040	9500 10100	11400 12100	13300 14100	15200 16100	17100	19000 20100
	40	IN	18800	3760	5640	7520	9400	11300	13200	15000	16900	18800
180	45	OUT IN	25400 23900	5080 4780	7620 7170	10200 9560	12700 12000	15200 14300	17800 16700	20300 19100	22900 21500	25400 23900
200	50	OUT IN	31400 29500	6280 5900	9420 8850	12600 11800	15700 14800	18800 17700	22000 20700	25100 23600	28300 26600	31400 29500
250	60	OUT	49100 46300	9820 9260	14700 13900	19600 18500	24600 23200	29500 27800	34400 32400	39300 37000	44200 41700	49100 46300
300	70	OUT	70700	14100 13400	21200 20000	28300 26700	35400 33400	42400 40100	49500 46800	56600 53400	63600 60100	70700
ingle	Acting	, Spring			20000	20700	00400	40100	+0000	30400	00100	(

Single Acting, Spring Return Cylinder

Bore size	Rod size	Operating	Piston area	-	Operating pressure (MPa)							
(mm)	(mm)	direction	(mm ²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
2.5		OUT	4.90	-	0.34	0.83	1.32	1.81	2.30	-	-	-
2.5	1	IN	-					0.64	•			
4	2	OUT	12.6	-	0.74	2.00	3.26	4.52	5.78	—	-	-
4	2	IN	-					1.47				
6	3	OUT	28.3	1.94	4.77	7.60	10.4	13.3	16.1	-	-	-
0	3	IN	-					1.77				
10	4	OUT	78.5	8.84	16.7	24.5	32.4	40.2	48.1	-	-	-
10	10 4 IN -							3.53				
16	5	OUT	201	26.0	46.1	66.2	86.3	106.4	126.5	-	-	-
10	5	IN	-					6.86				
20	8	OUT	314	23.8	55.2	87	118	149	181	212	244	275
20	0	IN	-					7.8				
25	10	OUT	491	51.2	100	149	199	248	297	346	395	444
25	10	IN	-					14				
32	12	OUT	804	94	174	255	335	415	496	576	657	737
32	12	IN	-					15				
40	14, 16	OUT	1260	176	302	428	554	680	806	934	1054	1184
40	14, 10	IN	-					24				

In the case of the extension side, theoretical output of single acting cylinder is a value taken secondary mounting load of the spring off theoretical output of double acting cylinder. In the case of the retraction side, take primary mounting load of the spring.
 Avoid loading the cylinder on the retraction side.


Technical Data 4: Condensation

Data 4 Condensation

In pneumatic systems, the generation of waterdrops in piping may affect the equipment's operation and service life.

Thus, compressed air that is supplied is normally dehumidified by an air dryer, and is then sent to the system. However, when a compact actuator is used in order to downsize the equipment and correspond to the demand of high speed, condensation may occur and cause damage even if dehumidified air is used.

When selecting cylinders, check the generation of condensation based on the control graph below.

Condensation Control Graph

How to analyze the control graph

(1) Determine the volume ratio Kv (3).

Determine the volume Kv using the following formula.

$$Kv = \frac{Vt}{Vc} \times \frac{0.1}{Ps + 0.1}$$

$$Vt: Piping volume [cm3]$$

$$Vc: Cylinder volume [cm3]$$

$$Ps: Supply air gauge pressure [MPa]$$

(2) Determine the intersection point (2) of the atmospheric pressure dew point of supply air (1) and volume ratio $K\nu$ (3).

(3) Determine whether condensation is generated depending on where the intersection point (2) falls.

Refer to a separate catalog, "Condensation Measures of Pneumatic Systems" (Refer to the SMC website.) for the details of measures. Condensation control can also be determined based on SMC's Pneumatic Equipment Model Selection Program Ver. 3.5.

